For JavaScript programmers, Node.js is really our preferred language for developing as a server. The performance advantage of Node.js is that it uses Google’s V8 engine, uses a non-blocking I/O model, and is event-driven. But Node.js doesn’t necessarily perform well in computationally intensive scenarios. Fortunately, there is a C++ Addons mechanism that allows us to write native C++ modules and call them from node.js.
Why use itC++
The module
C++
The community is huge and I want to be in our ready-madeNode.js
The application uses aC++
The module.- Computationally intensive scenarios with high performance requirements.
Here’s an example:Fabonacci
Fibonacci sequences are usually solved recursively, and here, to reflect the advantages of calling C++ modules in node.js, we don’t use caching in Fabonacci.
In Node.js, according to the Fabonacci definition, we write the following code, fabonacci.js:
// fabonacci.js
function fabonacciNodeJS(n) {
if (n === 0) {
return 0;
}
if (n === 1) {
return 1;
}
return fabonacciNodeJS(n - 1) + fabonacciNodeJS(n - 2);
}
function TestFabonnacci(func, env, n) {
const start = (new Date()).getTime();
const result = func(n);
const end = (new Date()).getTime();
console.log(`fabonacci(${n}) run in ${env} result is ${result}, cost time is ${end - start} ms.`);
}
TestFabonnacci(fabonacciNodeJS, 'Native Node.js'.40);
Copy the code
You can run this program from the command line with the following result:
fabonacci(40) run in Native Node.js result is 102334155, cost time is 1125 ms.
Copy the code
In order to show the advantages of using C++ extension modules in node.js for intensive computing scenarios, I wrote the following code according to C++ Addons, fabonacci. Cc:
// fabonacci.cc
#include <node.h>
namespace fabonacci {
using namespace v8;
static inline size_t runFabonacci(size_t n) {
if (n == 0)
{
return 0;
}
if (n == 1)
{
return 1;
}
return runFabonacci(n - 1) + runFabonacci(n - 2);
}
static void Fabonacci(const FunctionCallbackInfo<Value>& args) {
Isolate* isolate = args.GetIsolate();
// Check the parameter type
if(! args[0]->IsNumber())
{
isolate->ThrowException(Exception::Error(String::NewFromUtf8(isolate, "argument type must be Number")));
}
size_t n = args[0]->NumberValue();
Local<Number> num = Number::New(isolate, runFabonacci(n));
args.GetReturnValue().Set(num);
}
void init(Local<Object> exports, Local<Object> module) {
NODE_SET_METHOD(module."exports", Fabonacci);
}
NODE_MODULE(NODE_GYP_MODULE_NAME, init)
}
Copy the code
Modify the previous fabonacci. Js and test the above C++ extensions:
// fabonacci.js
const fabonacciCPP = require('./build/Release/fabonacci');
function fabonacciNodeJS(n) {
if (n === 0) {
return 0;
}
if (n === 1) {
return 1;
}
return fabonacciNodeJS(n - 1) + fabonacciNodeJS(n - 2);
}
function TestFabonnacci(func, env, n) {
const start = (new Date()).getTime();
const result = func(n);
const end = (new Date()).getTime();
console.log(`fabonacci(${n}) run in ${env} result is ${result}, cost time is ${end - start} ms.`);
}
TestFabonnacci(fabonacciNodeJS, 'Native Node.js'.40);
TestFabonnacci(fabonacciCPP, 'C++ Addon'.40);
Copy the code
Run the above program, the result is as follows:
fabonacci(40) run in Native Node.js result is 102334155, cost time is 1120 ms.
fabonacci(40) run in C++ Addon result is 102334155, cost time is 587 ms.
Copy the code
As you can see, calling the C++ extension module in node.js to calculate the Fibonacci number of n = 40 is nearly twice as fast.
fromHello World
start
Now, we can start by writing a Hello World to show how to write a C++ extension and call it in the node.js module:
Here is a Hello World module written in C++ Addons that can be called in node.js code.
#include <node.h>
namespace helloWorld {
using namespace v8;
static void HelloWorld(const FunctionCallbackInfo<Value>& args) {
// ISOLATE The current V8 execution environment. Each ISOLATE execution environment is independent of each other
Isolate* isolate = args.GetIsolate();
// Set the return value
args.GetReturnValue().Set(String::NewFromUtf8(isolate, "Hello, World!"));
}
static void init(Local<Object> exports, Local<Object> module) {
// set module.exports to HelloWorld
NODE_SET_METHOD(module."exports", HelloWorld);
}
// All Node.js plug-ins must have the following pattern of initialization functions
NODE_MODULE(NODE_GYP_MODULE_NAME, init)
}
Copy the code
The above C++ code is equivalent to the following JavaScript code:
module.exports.hello = (a)= > 'world';
Copy the code
First, create a file called binding.gyp in the project root directory as follows:
{
"targets": [{"target_name": "fabonacci"."sources": [ "fabonacci.cc"]]}}Copy the code
Binding. gyp uses a JSON-like format to describe the build configuration of the module. Sudo NPM install -g node-gyp install -g node-gyp
Execute in project root:
node-gyp configure
node-gyp build
Copy the code
After a successful build, the executable fabonacci. Node will be in the /build/Release directory of the project root directory. We can import this module in Node.js:
const hello = require('./build/Release/hello');
console.log(hello()); // Hello, World!
Copy the code
Conversion of V8 data types to JavaScript data types
V8 data types are converted to JavaScript data types
Data declared using V8 ::Local< V8 ::Value> according to the V8 documentation will be managed by V8’s Garbage Collector. Let’s write the following C++ module example, declare the following type V8 variable in the C++ module, and export it to the JavaScript module for use:
#include <node.h>
namespace datas {
using namespace v8;
static void MyFunction(const FunctionCallbackInfo<Value> &args) {
Isolate* isolate = args.GetIsolate();
args.GetReturnValue().Set(String::NewFromUtf8(isolate, "MyFunctionReturn"));
}
static void Datas(const FunctionCallbackInfo<Value> &args) {
Isolate* isolate = args.GetIsolate();
// Declare a V8 Object variable
Local<Object> object = Object::New(isolate);
// Declare a V8 variable of type Number
Local<Number> number = Number::New(isolate, 0);
// Declare a V8 String variable
Local<String> string = String::NewFromUtf8(isolate, "string");
// Declare a V8 Function variable
Local<FunctionTemplate> tpl = FunctionTemplate::New(isolate, MyFunction);
Local<Function> func = tpl->GetFunction();
// Declare a V8 Array variable
Local<Array> array = Array::New(isolate);
// Assign to array
for (int i = 0; i < 10; ++i)
{
array->Set(i, Number::New(isolate, i));
}
// Declare a V8 Boolean variable
Local<Boolean> boolean = Boolean::New(isolate, true);
// Declare a V8 Undefined variable
Local<Value> undefined = Undefined(isolate);
// Declare a V8 Null variable
Local<Value> nu = Null(isolate);
// Set the name of the function
func->SetName(String::NewFromUtf8(isolate, "MyFunction"));
// Assign a value to the object
object->Set(String::NewFromUtf8(isolate, "number"), number);
object->Set(String::NewFromUtf8(isolate, "string"), string);
object->Set(String::NewFromUtf8(isolate, "function"), func);
object->Set(String::NewFromUtf8(isolate, "array"), array);
object->Set(String::NewFromUtf8(isolate, "boolean"), boolean);
object->Set(String::NewFromUtf8(isolate, "undefined"), undefined);
object->Set(String::NewFromUtf8(isolate, "null"), nu);
args.GetReturnValue().Set(object);
}
static void init(Local<Object> exports, Local<Object> module) {
NODE_SET_METHOD(module."exports", Datas);
}
NODE_MODULE(NODE_GYP_MODULE_NAME, init)
}
Copy the code
Use the Node-gyp tool to build the above modules and introduce them into the Node.js module:
const datas = require('./build/Release/datas');
console.log(datas());
Copy the code
Running results:
JavaScript data type converted to V8 data type
For example, if we pass a JavaScript variable of the Number datatype in the parameter, we can use the V8 ::Number::Cast method to convert the JavaScript datatype to v8 datatype. We create the following module factory.cc, an example of factory pattern creation objects:
#include <node.h>
namespace factory {
using namespace v8;
static void Factory(const FunctionCallbackInfo<Value> &args) {
Isolate* isolate = args.GetIsolate();
Local<Object> object = Object::New(isolate);
object->Set(String::NewFromUtf8(isolate, "name"), Local<String>::Cast(args[0])); The Cast method implements JavaScript conversion to V8 data types
object->Set(String::NewFromUtf8(isolate, "age"), Local<Number>::Cast(args[1])); The Cast method implements JavaScript conversion to V8 data types
args.GetReturnValue().Set(object);
}
static void init(Local<Object> exports, Local<Object> module) {
NODE_SET_METHOD(module."exports", Factory);
}
NODE_MODULE(NODE_GYP_MODULE_NAME, init)
}
Copy the code
Call the above module:
const factory = require('./build/Release/factory');
console.log(factory('counter'.21)); // { name: 'counter', age: 21 }
Copy the code
Refer to the V8 documentation for other types of Cast calls.