background
Recently found a problem, also very interesting. Topic is, each training sample is A paper, labelA label these two articles are similar, labelB label these two articles belong to the same event (tight), but not for this article have two tags at the same time, or have A label, or B labels, and A and B label articles of misalignment.
The general idea for this problem is to build two models. However, since labels A and B are actually related to each other to A similar degree, training the two models alone will lose the correlation of labels and make them feel inferior.
But if you want to train multi-task single model, it is also more troublesome. Because a sample cannot have both labels at the same time, and for example, if it does not belong to the same event, there is no way to deduce whether it is similar or not, that is, missing labels cannot be constructed.
So the idea is to use a special tag value like a mask to control which subnetwork is enabled to train. The specific implementation measures are to set the loss of another subnetwork to 0 to prevent its training.
Customize the Loss function
Since the label values are 0 and 1, -1 is set as mask value, and -1 value in Y_true is replaced with the corresponding value in y_pred, so that the loss corresponding to the sample is 0.
Finally, since the labels are 0 and 1, we use binary_crossentropy as the loss function:
def mycrossentropy(y_true, y_pred) :
assert len(y_true.shape) == 2
y_true_np = y_true.numpy()
y_pred_np = y_pred.numpy()
tmp = y_pred_np.copy()
for i in range(y_true.shape[0) :for j in range(y_true.shape[1) :ify_true_np[i][j] ! = -1:
tmp[i][j] = y_true_np[i][j]
tmp_tensor = tf.Variable(tmp)
loss = binary_crossentropy(tmp_tensor, y_pred)
return loss
Copy the code
The model definition
When specifying a custom Loss function when compiling the model, KerAS will automatically use the custom Loss function for the two output targets respectively. Finally, the model calculates the sum of the two losses:
def get_model() :
K.clear_session()
bert_model = TFBertForPreTraining.from_pretrained(bert_path, from_pt=True)
input_ids = Input(shape=(None,), dtype='int32')
input_token_type_ids = Input(shape=(None,), dtype='int32')
input_attention_mask = Input(shape=(None,), dtype='int32')
bert_output = bert_model({'input_ids':input_ids, 'token_type_ids':input_token_type_ids, 'attention_mask':input_attention_mask}, return_dict=False, training=True)
projection_logits = bert_output[0]
bert_cls = Lambda(lambda x: x[:, 0])(projection_logits) [CLS] [CLS] [CLS
dropout_A = Dropout(0.5)(bert_cls)
output_A = Dense(2, activation='sigmoid')(dropout_A)
dropout_B = Dropout(0.5)(bert_cls)
output_B = Dense(2, activation='sigmoid')(dropout_B)
model = Model([input_ids, input_token_type_ids, input_attention_mask], [output_A, output_B])
model.compile(loss=mycrossentropy,
optimizer=Adam(1e-5), # Use a small enough learning rate
metrics=['accuracy'])
print(model.summary())
return model
Copy the code
The appendix
All the source code
# guide package
```python import os import sys import re from collections import Counter import random from tqdm import tqdm import numpy as np import tensorflow.keras as keras import tensorflow as tf tf.config.run_functions_eagerly(True) from keras.metrics import top_k_categorical_accuracy from keras.layers import * from keras.callbacks import * from keras.models import Model, load_model import keras.backend as K from keras.optimizers import Adam from keras.utils import to_categorical from keras.losses import SparseCategoricalCrossentropy, binary_crossentropy from transformers import ( BertTokenizer, TFBertForPreTraining, TFBertModel, ) ```
```python
tf.__version__
```
'2.3.0
```python ```
```python data_path = "sohu2021_open_data/" text_max_length = 512 bert_path = r".. /chinese_L-12_H-768_A-12" ```
```python ```
```python ```
```python ```
```python ```
# build TAB table
```python
label_to_id = {'0':0, '1':1}
```
```python
labels = [0, 1]
```
```python ```
```python ```
```python ```
```python ```
Build the raw data text iterator
Python def _transform_text(text): text = text.strip().replace('\n', '. '). The replace (' \ t ', '). The replace (' \ u3000 ', ') return re, sub (r '. + ', '. ', text) ```
Python def get_data_iterator(data_path, file_name): # TODO: select for category in os.listdir(data_path): category_path = os.path.join(data_path, category) if not os.path.isdir(category_path): continue file_path = os.path.join(category_path, file_name) if not os.path.isfile(file_path): continue # print(file_path) with open(file_path, 'r', encoding='utf-8') as f: for line in f: data = json.loads(line) data['source'] = _transform_text(data['source']) if len(data['source']) == 0: print('source:', line, data) break # continue data['target'] = _transform_text(data['target']) if len(data['target']) == 0: print('target:', line, data) break # continue label_name_list = list(key for key in data.keys() if key[:5]=='label') if len(label_name_list) ! = 1: print('label_name_list:', line, data) break # continue label_name = label_name_list[0] if data[label_name] not in label_to_id.keys(): print('label_name:', line, data, label_name) break # continue yield data['source'], data['target'], label_to_id[data[label_name]] ```
```python
it = get_data_iterator(data_path, "train.txt")
```
```python
next(it)
```
(' Who can beat Kobe's record of 81 points? O 'Neill gives 5 candidates, complemented by Lillard Bill! There are many current NBA hall of Fame stars, but only two can be bronze statues.
```python ```
```python ```
```python ```
```python ```
Get the sample number of the dataset
```python def get_sample_num(data_path, file_name): count = 0 it = get_data_iterator(data_path, file_name) for data in tqdm(it): count += 1 return count ```
```python
train_sample_count = get_sample_num(data_path, "train.txt")
```
59638 it [00:04, 12249.30 it/s]
```python
dev_sample_count = get_sample_num(data_path, "valid.txt")
```
9940 it [00:00, 12439.17 it/s]
```python
train_sample_count, dev_sample_count
```
(59638, 9940)
```python ```
```python ```
```python ```
```python ```
Build data iterators
```python
tokenizer = BertTokenizer.from_pretrained(bert_path)
```
```python def _get_indices(text, text_pair=None): return tokenizer.encode(text=text, text_pair=text_pair, max_length=text_max_length, add_special_tokens=True, padding='max_length', truncation_strategy='only_first', # return_tensors='tf' ) ```
```python def get_keras_bert_iterator(data_path, file_name, tokenizer): while True: data_it = get_data_iterator(data_path, file_name) for source, target, label in data_it: indices = _get_indices(text=source, text_pair=target) yield indices, label ```
```python
it = get_keras_bert_iterator(data_path, "train.txt", tokenizer)
```
```python
# next(it)
```
```python ```
```python ```
```python ```
```python ```
Build batch data iterators
```python def batch_iter(data_path, file_name, tokenizer, batch_size=64, shuffle=True): Keras_bert_iter = get_keras_bert_iterator(data_path, file_name, tokenizer) while True: data_list = [] for _ in range(batch_size): data = next(keras_bert_iter) data_list.append(data) if shuffle: random.shuffle(data_list) indices_list = [] label_list = [] for data in data_list: indices, label = data indices_list.append(indices) label_list.append(label) yield np.array(indices_list), np.array(label_list) ```
```python
it = batch_iter(data_path, "train.txt", tokenizer, batch_size=1)
```
```python
# next(it)
```
```python
it = batch_iter(data_path, "train.txt", tokenizer, batch_size=2)
```
```python
next(it)
```
/ home/ZSD - server/miniconda3 / envs/my/lib/python3.8 / site - packages/transformers/tokenization_utils_base py: 2162: FutureWarning: The `truncation_strategy` argument is deprecated and will be removed in a future version, use `truncation=True` to truncate examples to a max length. You can give a specific length with `max_length` (e.g. `max_length=45`) or leave max_length to None to truncate to the maximal input size of the model (e.g. 512 for Bert). If you have pairs of inputs, you can give a specific truncation strategy selected among `truncation='only_first'` (will only truncate the first sentence in the pairs) `truncation='only_second'` (will only truncate the second sentence in the pairs) or `truncation='longest_first'` (will iteratively remove tokens from the longest sentence in the pairs). warnings.warn(
(array([[ 101, 6435, 2810, ..., 0, 0, 0], [ 101, 6443, 5543, ..., 0, 0, 0]]), array([0, 0]))
```python ```
```python ```
```python ```
```python ```
# Define base model
```python # ! transformers-cli convert --model_type bert \ # --tf_checkpoint chinese_L-12_H-768_A-12/bert_model.ckpt \ # --config chinese_L-12_H-768_A-12/bert_config.json \ # --pytorch_dump_output chinese_L-12_H-768_A-12/pytorch_model.bin ```
```python
# bert_model = TFBertForPreTraining.from_pretrained("./chinese_L-12_H-768_A-12/", from_pt=True)
```
```python
# # it = get_keras_bert_iterator(r"data/keras_bert_train.txt", cat_to_id, tokenizer)
# it = batch_iter(r"data/keras_bert_train.txt", cat_to_id, tokenizer, batch_size=1)
# out = bert_model(next(it)[0])
# out[0]
```
```python def get_model(label_list): K.clear_session() bert_model = TFBertForPreTraining.from_pretrained(bert_path, from_pt=True) input_indices = Input(shape=(None,), dtype='int32') bert_output = bert_model(input_indices) projection_logits = bert_output[0] bert_cls = Lambda(lambda x: X [:, 0])(projection_logits) # Select the vector from [CLS] to make the classification dropout = dropout (0.5)(bert_clS) output = Dense(len(label_list), activation='softmax')(dropout) model = Model(input_indices, output) model.compile(loss='sparse_categorical_crossentropy', optimizer=Adam(1e-5), Metrics =['accuracy']) print(model.summary()) return model ' '
Python early_stopping = EarlyStopping(monitor='val_loss', patience=3) # Prevent over-fitting plateau = ReduceLROnPlateau(monitor="val_accuracy", verbose=1, mode=' Max ', Factor =0.5, patience=2) # Checkpoint = ModelCheckpoint('trained_model/keras_bert_sohu. Hdf5 ', monitor='val_loss',verbose=2, Save_best_only =True, mode=' Max ', save_weights_only=True
## Model training
```python def get_step(sample_count, batch_size): step = sample_count // batch_size if sample_count % batch_size ! = 0: step += 1 return step ```
```python # batch_size = 2 # train_step = get_step(train_sample_count, batch_size) # dev_step = get_step(dev_sample_count, batch_size) # train_dataset_iterator = batch_iter(data_path, "train.txt", tokenizer, batch_size) # dev_dataset_iterator = batch_iter(data_path, "valid.txt", tokenizer, Batch_size) # model = get_model(labels) # # Model training # model.fit(# train_dataset_iterator, # steps_per_epoch=10, # # steps_per_epoch=train_step, # epochs=5, # validation_data=dev_dataset_iterator, # validation_steps=2, # # validation_steps=dev_step, # callbacks=[early_stopping, plateau, checkpoint], # verbose=1 # ) # model.save_weights("trained_model/keras_bert_sohu_final.weights") # model.save("trained_model/keras_bert_sohu_final.model") ```
```python ```
```python ```
```python ```
```python ```
# Multi-tasking branching model
## Build the data iterator
```python
label_type_to_id = {'labelA':0, 'labelB':1}
```
```python def get_text_iterator(file_path): with open(file_path, 'r', encoding='utf-8') as f: for line in f: yield line ```
```python def get_data_iterator(data_path, file_name): # TODO: File_iters = [] for category in os.listdir(data_path): category_path = os.path.join(data_path, category) if not os.path.isdir(category_path): continue file_path = os.path.join(category_path, file_name) if not os.path.isfile(file_path): continue file_iter = get_text_iterator(file_path) file_iters.append(file_iter) while len(file_iters) > 0: i = random.randrange(len(file_iters)) line = next(file_iters[i], None) if line is None: del file_iters[i] continue data = json.loads(line) data['source'] = _transform_text(data['source']) if len(data['source']) == 0: print('source:', line, data) break # continue data['target'] = _transform_text(data['target']) if len(data['target']) == 0: print('target:', line, data) break # continue label_name_list = list(key for key in data.keys() if key[:5]=='label') if len(label_name_list) ! = 1: print('label_name_list:', line, data) break # continue label_name = label_name_list[0] if data[label_name] not in label_to_id.keys(): print('label_name:', line, data, label_name) break # continue label_dict = {key:-1 for key in label_type_to_id.keys()} label_dict[label_name] = label_to_id[data[label_name]] yield data['source'], data['target'], label_dict['labelA'], label_dict['labelB'] ```
```python
it = get_data_iterator(data_path, "train.txt")
```
```python
next(it)
```
(' li-nong Chen, imp appearance tencent music entertainment awards red carpet dirty blonde childe + red hair braided ghost rumbled characteristics', 'today, tencent entertainment music festival held in Macao, although there are no red carpet kun kun today, but still there are full marks, senior ren referring to appreciate junior when cue to kun kun, "CAI xu, he is so handsome, and his efforts in creation." Boystory, a new generation group, also said it is looking forward to the appearance of CAI Xukun. From the music industry to the new generation of groups, Kun Kun is simply old and young to kill, the national degree burst table, he is not in the river's lake, river's lake is everywhere his legend, looking forward to tonight CAI Xukun's wonderful stage! -1, 0 -1, 0 -1, 0 -1, 0
```python
get_sample_num(data_path, "train.txt")
```
59638 it [00:04, 12109.11 it/s]
59638
```python def _get_indices(text, text_pair=None): return tokenizer.encode_plus(text=text, text_pair=text_pair, max_length=text_max_length, add_special_tokens=True, padding='max_length', truncation_strategy='longest_first', # return_tensors='tf', return_token_type_ids=True ) ```
```python def get_keras_bert_iterator(data_path, file_name, tokenizer): while True: data_it = get_data_iterator(data_path, file_name) for source, target, labelA, labelB in data_it: data = _get_indices(text=source, text_pair=target) # print(indices, type(indices), len(indices)) yield data['input_ids'], data['token_type_ids'], data['attention_mask'], labelA, labelB ```
```python
it = get_keras_bert_iterator(data_path, "train.txt", tokenizer)
```
```python
# next(it)
```
```python def batch_iter(data_path, file_name, tokenizer, batch_size=64, shuffle=True): Keras_bert_iter = get_keras_bert_iterator(data_path, file_name, tokenizer) while True: data_list = [] for _ in range(batch_size): data = next(keras_bert_iter) data_list.append(data) if shuffle: random.shuffle(data_list) input_ids_list = [] token_type_ids_list = [] attention_mask_list = [] labelA_list = [] labelB_list = [] for data in data_list: input_ids, token_type_ids, attention_mask, labelA, labelB = data # print(indices, type(indices)) input_ids_list.append(input_ids) token_type_ids_list.append(token_type_ids) attention_mask_list.append(attention_mask) labelA_list.append(labelA) labelB_list.append(labelB) yield [np.array(input_ids_list), np.array(token_type_ids_list), np.array(attention_mask_list)], [np.array(labelA_list, dtype=np.int32), np.array(labelB_list, dtype=np.int32)] ```
```python
it = batch_iter(data_path, "train.txt", tokenizer, batch_size=2)
```
```python
next(it)
```
([array([[ 101, 686, 4518, ..., 4507, 1102, 102], [ 101, 122, 3299, ..., 8024, 1506, 102]]), array([[0, 0, 0, ..., 1, 1, 1], [0, 0, 0, ..., 1, 1, 1]]), array([[1, 1, 1, ..., 1, 1, 1], [1, 1, 1, ..., 1, 1, 1]])], [array([ 0, -1], dtype=int32), array([-1, 0], dtype=int32)])
## Define the model
```python def mycrossentropy(y_true, y_pred): # print(y_true) assert len(y_true.shape) == 2 y_true_np = y_true.numpy() y_pred_np = y_pred.numpy() tmp = y_pred_np.copy() for i in range(y_true.shape[0]): for j in range(y_true.shape[1]): if y_true_np[i][j] ! = 1: tmp[i][j] = y_true_np[i][j] # print(y_true_np, y_pred_np, tmp) tmp_tensor = tf.Variable(tmp) # print(tmp_tensor) loss = binary_crossentropy(tmp_tensor, y_pred) return loss ```
```python def get_model(): K.clear_session() bert_model = TFBertForPreTraining.from_pretrained(bert_path, from_pt=True) input_ids = Input(shape=(None,), dtype='int32') input_token_type_ids = Input(shape=(None,), dtype='int32') input_attention_mask = Input(shape=(None,), dtype='int32') bert_output = bert_model({'input_ids':input_ids, 'token_type_ids':input_token_type_ids, 'attention_mask':input_attention_mask}, return_dict=False, training=True) projection_logits = bert_output[0] bert_cls = Lambda(lambda x: X [:, 0])(projection_logits) # Select the vector from [CLS] and use it for classification. Dropout(0.5)(Bert_clS) Activation =' sigmoID ')(dropout_A) dropout_B = Dropout(0.5)(bert_CLS) output_B = Dense(2, activation='sigmoid')(dropout_B) model = Model([input_ids, input_token_type_ids, input_attention_mask], [output_A, output_B]) model.compile(loss=mycrossentropy, optimizer=Adam(1e-5), Metrics =['accuracy']) print(model.summary()) return model ' '
Python early_stopping = EarlyStopping(monitor='val_loss', patience=3) # Prevent over-fitting plateau = ReduceLROnPlateau(monitor="val_loss", verbose=1, mode=' Max ', Factor =0.5, patience=2) # Checkpoint = ModelCheckpoint('trained_model/multi_keras_bert_sohu. Hdf5 ', monitor='val_loss',verbose=2, Save_best_only =True, mode=' Max ', save_weights_only=True
## Model training
```python batch_size = 2 train_step = get_step(train_sample_count, batch_size) dev_step = get_step(dev_sample_count, batch_size) train_dataset_iterator = batch_iter(data_path, "train.txt", tokenizer, batch_size) dev_dataset_iterator = batch_iter(data_path, "valid.txt", tokenizer, Batch_size model = get_model() # model training model.fit(train_dataset_iterator, steps_per_epoch=10, # steps_per_epoch=train_step, epochs=2, validation_data=dev_dataset_iterator, validation_steps=2, # validation_steps=dev_step, callbacks=[early_stopping, plateau, checkpoint], verbose=1 ) model.save_weights("trained_model/multi_keras_bert_sohu_final.weights") model.save("trained_model/multi_keras_bert_sohu_final.model") ```
Some weights of the PyTorch Model were not used when initializing the TF 2.0 Model TFBertForPreTraining: ['bert.embeddings.position_ids', 'cls.predictions.decoder.bias'] - This IS expected if you are initializing TFBertForPreTraining from a PyTorch model trained on another task or with another architecture (e.g. initializing a TFBertForSequenceClassification model from a BertForPreTraining model). - This IS NOT expected if you are initializing TFBertForPreTraining from a PyTorch model that you expect to be exactly identical (e.g. initializing a TFBertForSequenceClassification model from a BertForSequenceClassification model). All the weights of TFBertForPreTraining were initialized from the PyTorch model. If your task is similar to the task the model of the checkpoint was trained on, you can already use TFBertForPreTraining for predictions without further training. The parameter `return_dict` cannot be set in graph mode and will always be set to `True`. The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`). The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
Model: "functional_1"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_3 (InputLayer) [(None, None)] 0
__________________________________________________________________________________________________
input_1 (InputLayer) [(None, None)] 0
__________________________________________________________________________________________________
input_2 (InputLayer) [(None, None)] 0
__________________________________________________________________________________________________
tf_bert_for_pre_training (TFBer TFBertForPreTraining 102882442 input_3[0][0]
input_1[0][0]
input_2[0][0]
__________________________________________________________________________________________________
lambda (Lambda) (None, 21128) 0 tf_bert_for_pre_training[0][0]
__________________________________________________________________________________________________
dropout_37 (Dropout) (None, 21128) 0 lambda[0][0]
__________________________________________________________________________________________________
dropout_38 (Dropout) (None, 21128) 0 lambda[0][0]
__________________________________________________________________________________________________
dense (Dense) (None, 2) 42258 dropout_37[0][0]
__________________________________________________________________________________________________
dense_1 (Dense) (None, 2) 42258 dropout_38[0][0]
==================================================================================================
Total params: 102,966,958
Trainable params: 102,966,958
Non-trainable params: 0
__________________________________________________________________________________________________
None
Epoch 1/2
WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
1/10 [==>...........................] - ETA: 0s - loss: 3.8835 - dense_loss: 0.0451 - dense_1_loss: 3.8384 - dense_accuracy: 0.0000e+00 - dense_1_accuracy: 0.5000WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
2/10 [=====>........................] - ETA: 1:51 - loss: 3.4529 - dense_loss: 0.2312 - dense_1_loss: 3.2217 - dense_accuracy: 0.0000e+00 - dense_1_accuracy: 0.7500WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
3/10 [========>.....................] - ETA: 1:33 - loss: 3.5984 - dense_loss: 0.1565 - dense_1_loss: 3.4419 - dense_accuracy: 0.0000e+00 - dense_1_accuracy: 0.6667WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
4/10 [===========>..................] - ETA: 1:20 - loss: 3.4786 - dense_loss: 0.1174 - dense_1_loss: 3.3611 - dense_accuracy: 0.0000e+00 - dense_1_accuracy: 0.7500WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
5/10 [==============>...............] - ETA: 1:05 - loss: 2.7876 - dense_loss: 0.0943 - dense_1_loss: 2.6933 - dense_accuracy: 0.0000e+00 - dense_1_accuracy: 0.6000WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
6/10 [=================>............] - ETA: 51s - loss: 2.9803 - dense_loss: 0.0930 - dense_1_loss: 2.8873 - dense_accuracy: 0.0000e+00 - dense_1_accuracy: 0.5833 WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
7/10 [====================>.........] - ETA: 39s - loss: 2.5808 - dense_loss: 0.0807 - dense_1_loss: 2.5001 - dense_accuracy: 0.0000e+00 - dense_1_accuracy: 0.5000WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
8/10 [=======================>......] - ETA: 27s - loss: 2.5830 - dense_loss: 0.3787 - dense_1_loss: 2.2043 - dense_accuracy: 0.0625 - dense_1_accuracy: 0.4375 WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
9/10 [==========================>...] - ETA: 13s - loss: 2.3130 - dense_loss: 0.3367 - dense_1_loss: 1.9764 - dense_accuracy: 0.0556 - dense_1_accuracy: 0.3889WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
10/10 [==============================] - ETA: 0s - loss: 2.1450 - dense_loss: 0.3110 - dense_1_loss: 1.8340 - dense_accuracy: 0.0500 - dense_1_accuracy: 0.4000
Epoch 00001: val_loss did not improve from 3.28840
10/10 [==============================] - 143s 14s/step - loss: 2.1450 - dense_loss: 0.3110 - dense_1_loss: 1.8340 - dense_accuracy: 0.0500 - dense_1_accuracy: 0.4000 - val_loss: 0.4693 - val_dense_loss: 0.0943 - val_dense_1_loss: 0.3749 - val_dense_accuracy: 0.0000e+00 - val_dense_1_accuracy: 0.5000
Epoch 2/2
WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
1/10 [==>...........................] - ETA: 0s - loss: 0.5968 - dense_loss: 0.2761 - dense_1_loss: 0.3207 - dense_accuracy: 0.0000e+00 - dense_1_accuracy: 0.5000WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
2/10 [=====>........................] - ETA: 46s - loss: 0.4425 - dense_loss: 0.1785 - dense_1_loss: 0.2639 - dense_accuracy: 0.0000e+00 - dense_1_accuracy: 0.5000WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
3/10 [========>.....................] - ETA: 54s - loss: 1.5856 - dense_loss: 0.1768 - dense_1_loss: 1.4089 - dense_accuracy: 0.0000e+00 - dense_1_accuracy: 0.5000WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
4/10 [===========>..................] - ETA: 53s - loss: 1.5564 - dense_loss: 0.4666 - dense_1_loss: 1.0898 - dense_accuracy: 0.1250 - dense_1_accuracy: 0.3750 WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
5/10 [==============>...............] - ETA: 48s - loss: 1.2798 - dense_loss: 0.3747 - dense_1_loss: 0.9051 - dense_accuracy: 0.1000 - dense_1_accuracy: 0.4000WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
6/10 [=================>............] - ETA: 40s - loss: 1.1164 - dense_loss: 0.3158 - dense_1_loss: 0.8006 - dense_accuracy: 0.0833 - dense_1_accuracy: 0.3333WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
7/10 [====================>.........] - ETA: 30s - loss: 1.1638 - dense_loss: 0.4592 - dense_1_loss: 0.7046 - dense_accuracy: 0.1429 - dense_1_accuracy: 0.2857WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
8/10 [=======================>......] - ETA: 21s - loss: 1.4686 - dense_loss: 0.8514 - dense_1_loss: 0.6172 - dense_accuracy: 0.2500 - dense_1_accuracy: 0.2500WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
9/10 [==========================>...] - ETA: 10s - loss: 1.3400 - dense_loss: 0.7723 - dense_1_loss: 0.5677 - dense_accuracy: 0.2222 - dense_1_accuracy: 0.2222WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
10/10 [==============================] - ETA: 0s - loss: 1.2521 - dense_loss: 0.7218 - dense_1_loss: 0.5304 - dense_accuracy: 0.2000 - dense_1_accuracy: 0.2000
Epoch 00002: val_loss improved from 3.28840 to 4.79835, saving model to trained_model/multi_keras_bert_sohu.hdf5
10/10 [==============================] - 120s 12s/step - loss: 1.2521 - dense_loss: 0.7218 - dense_1_loss: 0.5304 - dense_accuracy: 0.2000 - dense_1_accuracy: 0.2000 - val_loss: 4.7983 - val_dense_loss: 1.7329 - val_dense_1_loss: 3.0654 - val_dense_accuracy: 0.5000 - val_dense_1_accuracy: 0.5000
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
INFO:tensorflow:Assets written to: trained_model/multi_keras_bert_sohu_final.model/assets
```python
data = next(dev_dataset_iterator)
model.predict(data[0]), data[1]
```
([array([[0.00140512, 0.9738952], [0.00388548, 0.92772067]], DTYPE = FLOAT32), Array ([[4.7793665E-06, 9.890601002], E-04 [6.6167116, 2.2251016 e-01]], dtype = float32)], [array ([1, 1], dtype = int32), array ([0, 1], dtype = int32)])
```python ```
```python ```
```python ```
```python ```
# Model loading and testing
## load_weights ## load_model
```python ```
```python ```
Copy the code