Algorithms for programmers requirements are quite strict, let’s talk about the most common interview algorithm!!

1. Linear search algorithm

This algorithm is a general search algorithm with time complexity of N, and can be optimized by dichotomy search algorithm in the later stage

Sample code:

package com.yueqian.shujujiegou; import javax.swing.plaf.FontUIResource; /** * data structure ------------ linear lookup algorithm * @author LinChi * */ public class Select_SuanFa {public static void main(String[] args) {// target array int[] arr = new int[] ,2,3,4,5,6,7,8,9 {1}; Int target = 7; // int index = -1; // loop overfor(int i = 0; i<arr.length; i++) {if(arr[i] == target) {
				index = i;
				break;
			}
		}
		System.out.println("Found"+target+"Element subscript:"+index); }}Copy the code

2. Dichotomy search algorithm

Worst-case time order (log base 2n)

The best-case time complexity is O(1).

Algorithm idea:

Mid =(end+start)/2

If arr[index]=mid, return mid

If arr[index]>mid, search from the last half and set start to mid+1

If arr[index]<mid, look from the last half and set end to mid-1

If start>end returns -1, the element does not exist

Complete code:

package com.yueqian.shujujiegou; import java.util.Arrays; /** * data structure --------- dichotomy find * @author LinChi * */ public class Select1_SuanFa2 { public static void main(String[] args) { System.out.println(select(44)); } public static int the select (int target) {/ / define an array of int [] arr = 21,32,36,44,45,36,47,38,29 {}; Int start = 0; Int end = arr. Length -1; Int mid = (start+end)/2;while(true) {// If there is no such element, start>=end, returns -1if(start>end) {
		 	return- 1; } // check if it is equal to the middle elementif(arr[mid] == target) {// Assign the index of the middle position to the target positionreturn mid;
			}else {
				if(arr[mid] > target) {// Set end to mid-1; }elseStart = mid+1; } // get the new middle position (don't forget); }}}}Copy the code

3. Recursive algorithms

Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21… n

The recursive implementation

Public static int diGui(int n) {public static int diGui(int n) {public static int diGui(int n)if(n <= 2) {
			return 1;
		}else {
			returndiGui(n-2)+diGui(n-1); }}Copy the code

For loop optimization implementation

/ / useforPublic static int xunHuan(int n) {// Define the first number int first = 0; Int second = 1;for(int i = 0; i<n-1; Int sum = first+second; first = second; second = sum; }return second;
	}
Copy the code

Interview question: have a pair of rabbit, from be born after 3 months, every month all give birth to a pair of rabbit, rabbit child grow after 3 months, give birth to a pair of rabbit again, if rabbit all die, ask 7 months total how many pair of rabbit?

January, February, March, April, May, June, July

1 to 1 to 2 to 3 to 5 to 8 to 13 pairs (Fibonacci series)

Recursive implementation (time 2 to the N)

Public int birthRabbit(int month){if(month == 1 || month == 2) {
			return 1;
		} else {
			returnbirthRabbit(month - 1) + birthRabbit(month - 2); }}Copy the code

For loop optimization (time complexity N)

/ / useforPublic static int add1(int n) {public static int add1(int n) { int second = 1;for(int i = 1; i<n-1; i++) { int sum = first+second; first = second; second = sum; }return second;
	}
Copy the code

Interview question: There are n stairs in front of you, and you can only go up one or two steps at a time. How many different ways can you climb the stairs when N=11

Hannotta problem

Complete code:

package com.yueqian.shujujiegou; /** * data structure ------ recursive algorithm ---- Hannotta problem * @author LinChi
 *
 */
public class DiGui_HanNuoTa {
	public static void main(String[] args) {
		hanNuoTa(3, 'A'.'B'.'C'); } /** ** @param n Total number of plates * @param from the column that started moving * @paraminPublic static void hanNuoTa(int n,char from,charin,char to) {
		if(n==1) {
			System.out.println("The first plate from"+from+"Move to"+to);
		}else{// hanNuoTa(n-1,from,to,in); // Move the biggest plate below system.out.println ("The first"+n+"A plate from"+from+"Move to"+to); // Move all the above plates from the middle position to the target position.in,from,to); }}}Copy the code

On the blackboard

In the face of the above several data structure algorithm problems, friends consider the realization of these algorithms, simplify complex problems, find rules, broaden thinking, can solve the idea.


My recommended github address is github.com/Lmobject

Little lovely people, Java implementation search algorithm, recursive algorithm to this is over, interested in binary tree can add attention to oh!! , the late continuous update…