First, the way to obtain the code
Get the code 1: by subscribing to the paid column of purple Pole Shenguang blog, you can get this code with payment voucher, private letter bloggers.
Access code 2: Open CSDN membership through the homepage of CSDN blog, and the code can be obtained by payment voucher and private letter bloggers.
Multi-objective solution based on matlab adaptive wind drive algorithm to solve multi-objective optimization problem
Note: For CSDN membership, only one code can be obtained free of charge (valid within three days from the date of opening); Subscribe to the paid column of purple Pole Shenguang blog, you can get 2 copies of the code for free (valid for three days from the subscription date);
Two, some source code
function MO_AWDO_v01(a)
%-------------------------------------------------------------------------
tic; clear; close all; clc;
format long g;
%--------------------------------------------------------------
ArchiveParetoFronts = [];
% User defined parameters:
param.popsize = 100; % population size.
param.npar = 10; % Dimension of the problem.
param.maxit = 100; % Maximum number of iterations.
maximumV = 0.5; % maximum allowed speed.
%--------------------------------------------------------------
% AWDO will select the coefficient values; alpha, RT, g, c, and Vmax:
rec.arx = rand(5,param.popsize); %consistent with the CMAES indexing
%---------------------------------------------------------------
% Initialize WDO population, position and velocity:
% Randomize population position in the range of [- 1.1]:
pos = 2*(rand(param.popsize,param.npar)0.5);
% Randomize velocity in the range of [-Vmax, Vmax]:
vel = maximumV * 2 * (rand(param.popsize,param.npar)0.5);
%---------------------------------------------------------------
% Evaluate initial population via multi-objective function:
for K=1:param.popsize,
% [f1,f2] = kursawe(pos(K,:));
% [f1,f2] = kita(pos(K,:));
% [f1,f2] = schaffer(pos(K,:));
% [f1,f2] = ZDT1(pos(K,:));
[f1,f2] = ZDT4(pos(K,:));
pres(K,:) = [f1,f2];
end
%----------------------------------------------------------------
%
% Call non-dominated sorting to identify the Pareto-front that each particle belongs:
posF=[pos, pres];
f = non_domination_sort_mod(posF, 2,param.npar); % f = [pos, f1, f2, rank]
% extract the rank index, i.e. which Pareto-front the particle belongs:
rank_ind = f(:,param.npar+3);
% Select the Pareto-front == 1 particles as Global Best Position:
globalposPOP = f( (f(:,param.npar+3) = =1),1:param.npar);
% Archieve the rank 1 particles:
ArchiveParetoFronts = [ArchiveParetoFronts; f( (f(:,param.npar+3) = =1),1:(param.npar+2))]; %----------------------------------------------------------------- % Start iterations : iter =1; % iteration counter
for ij = 2:param.maxit,
ij
% Update the velocity:
for i=1:param.popsize
% choose random dimensions:
a = randperm(param.npar);
% choose velocity based on random dimension:
velot(i,:) = vel(i,a);
% randomly select a globalpos from the 1st Pareto-front members
[aa, bb] = size(globalposPOP);
globalpos = globalposPOP(round(((aa- 1) * rand(1.1)) + 1), :); vel(i,:) = (1-rec.arx(1,i))*vel(i,:)-(rec.arx(2,i)*pos(i,:))+ ...
abs(1- 1/rank_ind(i))*((globalpos-pos(i,:)).*rec.arx(3,i))+ ...
(rec.arx(4,i)*velot(i,:)/rank_ind(i));
end
% maxV is optimized by CMAES. Limit it maximumV defined by user
maxV = rec.arx(5, :); maxV = min(maxV, repmat(maximumV, size(rec.arx(5, :).1), size(rec.arx(5, :).2))); maxV = max(maxV, repmat(-maximumV, size(rec.arx(5, :).1), size(rec.arx(5, :).2))); % Check velocity limits: vel = min(vel, repmat(maxV'.1,param.npar));
vel = max(vel, -repmat(maxV'.1,param.npar));
% Update air parcel positions:
pos = pos + vel;
pos = min(pos, 1.0);
pos = max(pos, 1.0);
% Evaluate population: (Pressure)
for K=1:param.popsize,
% [f1,f2] = kursawe(pos(K,:));
% [f1,f2] = kita(pos(K,:));
% [f1,f2] = schaffer(pos(K,:));
% [f1,f2] = ZDT1(pos(K,:));
[f1,f2] = ZDT4(pos(K,:));
pres(K,:) = [f1,f2];
end
% Call non-dominated sorting to identify the Pareto-front that each particle belongs:
posF=[pos, pres];
f = non_domination_sort_mod(posF, 2,param.npar); % f = [pos, f1, f2, rank]
% extract the rank index, i.e. which Pareto-front the particle belongs:
rank_ind = f(:,param.npar+3);
% Select the Pareto-front == 1 particles and add them to the archieve along previous Pareto-fronts:
ArchiveParetoFronts = [ArchiveParetoFronts; f( (f(:,param.npar+3) = =1),1:(param.npar+2))]; % Run the non-dominated sort among the Archieve members: f = non_domination_sort_mod(ArchiveParetoFronts,2,param.npar);
% Replace the archieve with only the rank=1 members:
ArchiveParetoFronts = f( (f(:,param.npar+3) = =1),1:(param.npar+2)); % Use rank=1 members as global position:
globalposPOP = f( (f(:,param.npar+3) = =1),1:param.npar);
%--------------------------------
% call CMAES
[rec] = purecmaes_wdo(ij,rec,param.popsize,pres(:, mod(ij,2) +1));
%%% PRES has two values, pass one of the pres values at each iter
%%% alternating between two.
%----------------------------------------------------
end
%%% PLOT RESULTS:
% Call non-dominant sorting:
f = non_domination_sort_mod(ArchiveParetoFronts, 2,param.npar);
% Plot the MO-results -- debugging purposes
pres2plot = f( (f(:,param.npar+3) = =1) , param.npar+1 : param.npar+2);
plot(pres2plot(:,1), pres2plot(:,2),'ko')
xlabel('F1'); ylabel('F2')
grid on
% save('Results.mat'.'pres2plot')
hold on
% load the known-Pareto-front data for plotting:
z = load('paretoZDT4.dat');
[a,b]=sort(z(:,2));
z = z(b,:);
plot(z(:,1),z(:,2),'-k') end % end-of-WDO. %---------------------------------------------------------------------- % -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- % -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --Copy the code
3. Operation results
Matlab version and references
1 matlab version 2014A
Intelligent Optimization Algorithm and its MATLAB Examples (2nd edition), baoyang, Yu Jizhou, Yang Shan, Publishing House of Electronics Industry