A list,

Solar wind particle Simulation based on MATLAB PIC model

Ii. Source code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Si
%
% For more, 
% and
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%reset variables
clear variables

%identify globals needed by the potential solver
global EPS0 QE den A n0 phi0 phi_p Te box 

%setup constants
EPS0 = 8.854 e-12;		%permittivity of free space
QE = 1.602 e-19;			%elementary charge
K = 1.381 e-23;			%boltzmann constant
AMU = 1.661 e-27;		%atomic mass unit
M = 32*AMU;             %ion mass (molecular oxygen)

%input settings
n0 = 1e12;				%density in #/m^3
phi0 = 0;               %reference potential 
Te = 1;                 %electron temperature in eV
Ti = 0.1;              	%ion velocity in eV
v_drift = 7000;        	%ion injection velocity, 7km/s
phi_p = - 5;            	%wall potential

%calculate plasma parameters
lD = sqrt(EPS0*Te/(n0*QE));    	%Debye length
vth = sqrt(2*QE*Ti/M);			%thermal velocity with Ti in eV

%set simulation domain
nx = 16;               %number of nodes in x direction
ny = 10;               %number of nodes in y direction
ts = 200;              %number of time steps
dh = lD;               %cell size
np_insert = (ny- 1) *15; %insert 15 particles per cell

%compute some other values
nn = nx*ny;             %total number of nodes
dt = 0.1*dh/v_drift;	%time step, at vdrift move 0.10dx
Lx = (nx- 1)*dh;         %domain length in x direction
Ly = (ny- 1)*dh;         %domain length in y direction

%specify plate dimensions
box(1, :) = [floor(nx/3) floor(nx/3) +2]; %x range
box(2, :) = [1 floor(ny/2)];             %y range

%create an object domain for visualization
object = zeros(nx,ny);
for j=box(2.1):box(2.2)
    object(box(1.1):box(1.2),j)=ones(box(1.2)-box(1.1) +1.1);
end

%calculate specific weight
flux = n0*v_drift*Ly;       %flux of entering particles
npt = flux*dt;              %number of real particles created per timestep
spwt = npt/np_insert;       %specific weight, real particles per macroparticle
mp_q = 1;                   %macroparticle charge
max_part=20000;             %buffer size

%allocate particle array
part_x = zeros(max_part,2); %particle positions
part_v = zeros(max_part,2); %particle velocities

%set up multiplication matrix for potential solver
%here we are setting up the Finite Difference stencil

A = zeros(nn);              %allocate empty nn * nn matrix

%set regular stencil on internal nodes
for j=2:ny- 1                    %only internal nodes
    for i=2:nx- 1
        u = (j- 1)*nx+i;         %unknown (row index)
        
        A(u,u) = 4 -/(dh*dh);    %phi(i,j)
        A(u,u- 1) =1/(dh*dh);     %phi(i- 1,j)
        A(u,u+1) =1/(dh*dh);     %phi(i+1,j)
        A(u,u-nx)=1/(dh*dh);    %phi(i,j- 1)
        A(u,u+nx)=1/(dh*dh);    %phi(i,j+1)
    end  
end

%neumann boundary on y=0
for i=1:nx
    u=i;
    A(u,u) = - 1/dh;              %phi(i,j)
    A(u,u+nx) = 1/dh;            %phi(i,j+1)
end

%neumann boundary on y=Ly
for i=1:nx
    u=(ny- 1)*nx+i;
    A(u,u-nx) = 1/dh;            %phi(i,j- 1)
    A(u,u) = - 1/dh;              %phi(i,j)
end

%neumann boundary on x=Lx
for j=1:ny
    u=(j- 1)*nx+nx;
    A(u,:)=zeros(1,nn);         %clear row
    A(u,u- 1) = 1/dh;            %phi(i- 1,j)
    A(u,u) = - 1/dh;             %phi(i,j)
end

%dirichlet boundary on x=0
for j=1:ny
    u=(j- 1)*nx+1;
    A(u,:)=zeros(1,nn);         %clear row
    A(u,u) = 1;                 %phi(i,j)
end

%dirichlet boundary on nodes corresponding to the plate
for j=box(2.1):box(2.2)
    for i=box(1.1):box(1.2)
        u=(j- 1)*nx+i;
        A(u,:)=zeros(1,nn);     %clear row
        A(u,u)=1;               %phi(i,j)
    end
end

%initialize
phi = ones(nx,ny)*phi0;         %set initial potential to phi0
np = 0;                         %clear number of particles

disp(['Solving potential for the first time. Please be patient, this could take a while.']);

%%%%%%%%%%%%%%%%%%%%%%%%
% MAIN LOOP
%%%%%%%%%%%%%%%%%%%%%%%%
for it=1:ts                     %iterate for ts time steps
      	    
	%reset field quantities
	den = zeros(nx,ny);         %number density
	efx = zeros(nx,ny);         %electric field, x-component
    efy = zeros(nx,ny);         %electric field, y-component
	chg = zeros(nx,ny);         %charge distribution
    
    %*** 1. CALCULATE CHARGE DENSITY ***
	
    % deposit charge to nodes
	for p=1:np                          %loop over particles
		fi = 1+part_x(p,1)/dh;          %real i index of particle's cell
		i = floor(fi);                  %integral part
		hx = fi-i;                      %the remainder
        
        fj = 1+part_x(p,2)/dh;          %real j index of particle's cell
        j = floor(fj);                  %integral part
        hy = fj-j;                      %the remainder

        %interpolate charge to nodes
		chg(i,j) = chg(i,j) + (1-hx)*(1-hy);
		chg(i+1,j) = chg(i+1,j) + hx*(1-hy);
        chg(i,j+1) = chg(i,j+1) + (1-hx)*hy;
        chg(i+1,j+1) = chg(i+1,j+1) + hx*hy;
	end 

	%calculate density
	den = spwt*mp_q*chg/(dh*dh);
    
    %apply boundaries
	den(1, :) = 2*den(1, :); %double density since only half volume contributing
    den(nx,:) = 2*den(nx,:);
    den(:,1) = 2*den(:,1);
    den(:,ny) = 2*den(:,ny);
    
    %add density floor for plotting and to help the solver
    den = den + 1e4; % * * *2.CALCULATE POTENTIAL *** phi = eval_2dpot_GS(phi); % * * *3. CALCULATE ELECTRIC FIELD ***
	efx(2:nx- 1, :) = phi(1:nx2 -,:) - phi(3:nx,:);  %central difference on internal nodes
    efy(:,2:ny- 1) = phi(:,1:ny2 -) - phi(:,3:ny);  %central difference on internal nodes
    efx(1, :) = 2*(phi(1,:) - phi(2:)); %forward difference on x=0
    efx(nx,:) = 2*(phi(nx- 1,:) - phi(nx,:));      %backward difference on x=Lx
    efy(:,1) = 2*(phi(:,1) - phi(:,2));           %forward difference on y=0
    efy(:,ny) = 2*(phi(:,ny- 1) - phi(:,ny));      %forward difference on y=Ly
    
    efx = efx / (2*dh);    %divide by dominator
    efy = efy / (2*dh); % * * *4. GENERATE NEW PARTICLE ***
    if (np+np_insert>=max_part)     %make sure we don't exceed array limits
  %      np_insert=max_part-np;
    end

    %insert particles randomly distributed in y and in the first cell
    part_x(np+1:np+np_insert,1)=rand(np_insert,1)*dh;   %x position
    part_x(np+1:np+np_insert,2)=rand(np_insert,1)*Ly;   %y position

    %sample Maxwellian in x and y, add drift velocity in x
    part_v(np+1:np+np_insert,1)=v_drift+(1.5+rand(np_insert,1)+rand(np_insert,1)+rand(np_insert,1))*vth;
    part_v(np+1:np+np_insert,2) =0.5* (1.5+rand(np_insert,1)+rand(np_insert,1)+rand(np_insert,1))*vth;
    np=np+np_insert;    %increment particle counter

    %*** 5. MOVE PARTICLES ***
	p=1;
    while(p<=np)                        %loop over particles
		fi = 1+part_x(p)/dh;            %i index of particle's cell
		i  = floor(fi);
		hx = fi-i;                      %fractional x position in cell
        
        fj = 1+part_x(p,2)/dh;          %j index of particle' cell
        j = floor(fj);
        hy = fj-j;                      %fractional y position in cell
        
        %gather electric field
        E=[0 0];
  		E = [efx(i,j) efy(i,j)]*(1-hx)*(1-hy);      %contribution from (i,j)
		E = E+ [efx(i+1,j) efy(i+1,j)]*hx*(1-hy);   %(i+1,j)
        E = E + [efx(i,j+1) efy(i+1,j)]*(1-hx)*hy;  %(i,j+1)
        E = E + [efx(i+1,j+1) efy(i+1,j+1)]*hx*hy;  %(i+1,j+1)
        
        %update velocity and position
        F = QE*E;                           %Lorentz force, F=qE
		a = F/M;                            %acceleration
		part_v(p,:) = part_v(p,:)+a*dt;     %update velocity
		part_x(p,:) = part_x(p,:)+part_v(p,:)*dt;   %update position
Copy the code

3. Operation results



Fourth, note

Version: 2014 a