One, study Clang
1, Clang understanding
- Clang is a
C, C++, and Objective-C
Lightweight compiler. The source code is distributed under the BSD protocol. Clang will support its normal lambda expressions, simplified handling of return types, and better handling of constexpr keywords. - Clang was created by
Apple
Lead to write, based on LLVM C/C++/ objective-C compiler In April 2013
,Clang has full support for the C++11 standard and has begun implementing C++1y features (also known as C++14, the next minor update to C++). Clang will support its normal lambda expressions, simplified handling of return types, and better handling of constexpr keywords.Clang is a C++ written
, based on LLVM, published in LLVMBSD license
C/C++/Objective-C/Objective-C++ compiler.It is almost completely compatible with the GNU C language specification
(Of course, there are some incompatibilities, including a slightly different compilation option), and it adds additional syntactic features, such as C function overloading (which modifiers functions with __attribute__((overloadable)), whose goal (among other things) is to go beyondGCC
.
2, Clang features
End User Features
: Fast compilation and less memory usage Has diagnostic function; Compatible with GCC;Utilities and applications
: Infrastructure module library; Meet various customer requirements (code refactoring, dynamic analysis, code generation, etc.); Allows integration into a variety of ides; Use LLVM’BSD’ protocol;Internal design and implementation
: a non-portable code base; A non-general-purpose parser for C, Objective-C, C++, and Objective-C++; Highly consistent with C/C++/Objective-C and their derivative languages;
3. C language association
Library:
C Standard function library, glibc, Dietlibc, uClibc, Newlib, EGLIBC, BionicFeatures:
String, Syntax, Preprocessor, Variable types and declarations, FunctionsExtended related programming languages:
C++, Objective-C, D, C#C and other programming languages:
Compatibility, operator, Comparison of Pascal and C, C to Java bytecode CompilerCompiler:
Borland Turbo C,Clang
、GCC
Visual C++/CLI, C++/CX, Watcom C/C++ compiler
4, Clang use
Create a new project and go to the file directory where main.m is located
// By default, main.m generates main.cpp
clang -rewrite-objc main.m
// Discover that main.cpp is generated in the current file directory
// We can also generate debug or release. CPP for comparison purposes
// This is necessary for projects with multiple versions
clang -rewrite-objc main.m -o mainDebug.cpp
clang -rewrite-objc main.m -o mainRelease.cpp
Copy the code
- encounter
fatal error: 'UIKit/UIKit.h' file not found
when - Method 1
/ / the default
clang -x objective-c -rewrite-objc -isysroot /Applications/Xcode.app/Contents/Developer/Platforms/iPhoneSimulator.platform/Developer/SDKs/iPhoneSimulator.sdk main.m
// The same is true for versions
clang -x objective-c -rewrite-objc -isysroot /Applications/Xcode.app/Contents/Developer/Platforms/iPhoneSimulator.platform/Developer/SDKs/iPhoneSimulator.sdk main.m -o mainclang.cpp
Copy the code
- Method 2
xcrun -sdk iphonesimulator clang -rewrite-objc main.m
Copy the code
// Version differentiation xcrun-sdk iphonesimulator clang-rewrite-objc main.m -o maixcrun.cppCopy the code
- Change the path as required in different scenarios
// Apple provides seven different SDKS for developers
/ / 1 TV real machine
AppleTVOS.platform
//2 Real TV simulator
AppleTVSimulator.platform
//3 Real phone
iPhoneOS.platform
//4 Mobile phone simulator
iPhoneSimulator.platform
//5 MacBook
MacOSX.platform
/ / 6 watch real machine
WatchOS.platform
//7 Watch Emulator
WatchSimulator.platform
Copy the code
Meets the fatal error: ‘libkern/machine/OSByteOrder. H file not found
Replace -rewrite-objc with -arch arm64 -rewrite-objcCopy the code
Clang is up to now, and can be added later if necessary
Two, union and bitfield
1. Consortium
- New consortium
union unionA{
int a;/ / 4
short b;/ / 2
char c;/ / 1
};
Copy the code
- Run the code
union unionA person;
person.a = 97;
NSLog(@"a=%d---b=%d---c=%c",person.a,person.b,person.c);
person.b = 98;
NSLog(@"a=%d---b=%d---c=%c",person.a,person.b,person.c);
person.c = 'c';
NSLog(@"a=%d---b=%d---c=%c",person.a,person.b,person.c);
NSLog(@"%lu---%lu".sizeof(person),sizeof(union unionA));
Copy the code
- The output
202107 -- 22 19:12:59.705962+0800Relationship between objects and ISA [9115:282714] a=97---b=97---c=a
202107 -- 22 19:12:59.706048+0800Relationship between objects and ISA [9115:282714] a=98---b=98---c=b
202107 -- 22 19:12:59.706077+0800Relationship between objects and ISA [9115:282714] a=99---b=99---c=c
202107 -- 22 19:12:59.706097+0800Relationship between objects and ISA [9115:282714] 4--4 -
//97-99 corresponds to ASSCII code A-C
// The log shows that the three elements of the union have the same value three times
// The union memory is 4 bytes and the same as a's memory
Copy the code
conclusion
- All elements of a union
Shared memory
To giveAny element
The assignment can beCovering the memory
- A union can define multiple members of different types, the union of
Memory size
By includingThe size of the largest member
decision
Advantages and disadvantages of consortium
- Advantages: More flexible memory usage, save memory.
- The bad: Not tolerant enough.
ASSCII code comparison
ASSCII code is in decimal 0-255 and hexadecimal 00-FF, refer to the fragment
2, a domain
- The bit field is necessary to understand the x/ NUF addr first
N to the number of real memory unit -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- u said each unit bytes single-byte h b double byte four bytes g w eight bytes -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- f display mode, desirable value as follows: x16Hexadecimal d10Hexadecimal u10Base unsigned O8Hexadecimal t2In system a.16Base I instruction C character F floating pointCopy the code
The foundation should be solid
- Enter the exploration
Create two new constructs
/ / structure
struct struct1 {
BOOL A;
BOOL B;
BOOL C;
BOOL D;
BOOL E;
};
/ / a domain
struct struct2 {
BOOL A:1;
BOOL B:1;
BOOL C:1;
BOOL D:1;
BOOL E:1;
};
Copy the code
Output logs and debug breakpoints
struct struct1 truct1;
struct struct2 truct2;
NSLog(@"----%lu----%lu".sizeof(truct1),sizeof(truct2));
truct1.A = YES;
truct1.B = YES;
truct2.A = YES;
truct2.B = YES;
Copy the code
Truct1 = 5 bytes truct2 = 1 byte
202107 -- 23 10:43:14.583061+0800Relationship between objects and ISA [12570:373355] -- 5---- 1
// Check truct1 to see 8 bytes in hexadecimal
ABCDE = 0x01 0x01 0x00 0x00 0x00 0x00(i.e. 11000)
(lldb) p &truct1
(struct1 *) $0 = 0x00007ffeef028308
(lldb) x/gx 0x00007ffeef028308
0x7ffeef028308: 0x0000000000000101
//truct2 I check a byte in base 2
ABCDE = 0b1 0B1 0B0 0B0 0B0 0B0 0B0 (11000)
(lldb) p &truct2
(struct2 *) $1 = 0x00007ffeef028300
(lldb) x/bt 0x00007ffeef028300
0x7ffeef028300: 0b00000011
Copy the code
Structure:
0x0000000000000101A domain:
0b00000011- It’s obvious that bitfields make the most of binary data
Storage and transmission
Has an advantage in terms of
Third, object research
- Create an object in main.m
@interface NBPerson : NSObject{
NSString * height;
}
@property(nonatomic.copy)NSString *name;
@property(nonatomic.assign)NSInteger age;
@end
@implementation NBPerson
@end
int main(int argc, const char * argv[]) {
@autoreleasepool {
// insert code here...
NSLog(@"Hello, World!");
}
return 0;
}
Copy the code
Generate main. CPP to find NBPerson
#ifndef _REWRITER_typedef_NBPerson
#define _REWRITER_typedef_NBPerson
// Classes and objects exist as structures in the CPP file
/ / NBPerson objc_object inheritance
// Objc_object is the underlying implementation of NSObject
typedef struct objc_object NBPerson;
typedef struct {} _objc_exc_NBPerson;
#endif
extern "C" unsigned long OBJC_IVAR_$_NBPerson$_name;
extern "C" unsigned long OBJC_IVAR_$_NBPerson$_age;
struct NBPerson_IMPL {
struct NSObject_IMPL NSObject_IVARS;// Nested structures inherit member variables
NSString *height;//NBPerson member variable
NSString *_name;/ / NBPerson properties
NSInteger _age;/ / NBPerson properties
};
// @property(nonatomic, copy)NSString *name;
// @property(nonatomic,assign)NSInteger age;
/* @end */
// Reference structure
struct NSObject_IMPL {
Class isa;
};
Copy the code
- Find method
// @implementation NBPerson
/ / _name getter method
static NSString * _I_NBPerson_name(NBPerson * self, SEL _cmd) { return(* (NSString((* *)char *)self + OBJC_IVAR_$_NBPerson$_name)); }
extern "C" __declspec(dllimport) void objc_setProperty (id, SEL, long.id.bool.bool);
/ / _name setter methods
static void _I_NBPerson_setName_(NBPerson * self, SEL _cmd, NSString *name) { objc_setProperty (self, _cmd, __OFFSETOFIVAR__(struct NBPerson, _name), (id)name, 0.1); }
/ / _age getter method
static NSInteger _I_NBPerson_age(NBPerson * self, SEL _cmd) { return(* (NSInteger((*)char *)self + OBJC_IVAR_$_NBPerson$_age)); }
/ / _age setter methods
static void _I_NBPerson_setAge_(NBPerson * self, SEL _cmd, NSInteger age) { (*(NSInteger((*)char *)self + OBJC_IVAR_$_NBPerson$_age)) = age; }
// @end
Copy the code
This code generates the setter and getter methods for name and age
- Commonly used type
//Class is a pointer to the struct type of objc_class
typedef struct objc_class *Class;
// Objc_object has only one member variable
struct objc_object {
Class _Nonnull isa __attribute__((deprecated));
};
// Similarly, id is the pointer to the objc_object structure
typedef struct objc_object *id;
//SEL is the pointer to the objc_Selector structure
typedef struct objc_selector *SEL;
Copy the code
Fourth, associate isa
- Code breakpoints
NBPerson *nb = [[NBPerson alloc]init];
nb.name = @"nb";
NSLog(@ "% @",nb.name);
Copy the code
- To find the source
/ / 1
+ (id)alloc
/ / 2
_objc_rootAlloc(Class cls)
/ / 3
callAlloc(cls, false/*checkNil*/.true/*allocWithZone*/);
/ / 4
_objc_rootAllocWithZone(cls, nil);
/ / 5
_class_createInstanceFromZone(cls, 0, nil,OBJECT_CONSTRUCT_CALL_BADALLOC);
/ / 6
initInstanceIsa(cls, hasCxxDtor)
Copy the code
inline void
objc_object: :initInstanceIsa(Class cls, bool hasCxxDtor){ ASSERT(! cls->instancesRequireRawIsa()); ASSERT(hasCxxDtor == cls->hasCxxDtor()); initIsa(cls,true, hasCxxDtor);
}
Copy the code
inline void
objc_object::initIsa(Class cls, bool nonpointer, UNUSED_WITHOUT_INDEXED_ISA_AND_DTOR_BIT boolhasCxxDtor) { ASSERT(! isTaggedPointer()); isa_t newisa(0);
if(! nonpointer) { newisa.setClass(cls,this);
} else{ ASSERT(! DisableNonpointerIsa); ASSERT(! cls->instancesRequireRawIsa());#if SUPPORT_INDEXED_ISA
ASSERT(cls->classArrayIndex() > 0);
newisa.bits = ISA_INDEX_MAGIC_VALUE;
// isa.magic is part of ISA_MAGIC_VALUE
// isa.nonpointer is part of ISA_MAGIC_VALUE
newisa.has_cxx_dtor = hasCxxDtor;
newisa.indexcls = (uintptr_t)cls->classArrayIndex();
#else
newisa.bits = ISA_MAGIC_VALUE;
// isa.magic is part of ISA_MAGIC_VALUE
// isa.nonpointer is part of ISA_MAGIC_VALUE
# if ISA_HAS_CXX_DTOR_BIT
newisa.has_cxx_dtor = hasCxxDtor;
# endif
newisa.setClass(cls, this);
#endif
newisa.extra_rc = 1;
}
// This write must be performed in a single store in some cases
// (for example when realizing a class because other threads
// may simultaneously try to use the class).
// fixme use atomics here to guarantee single-store and to
// guarantee memory order w.r.t. the class index table
/ /... but not too atomic because we don't want to hurt instantiation
isa = newisa;
}
Copy the code
- The key to class association
inline void
isa_t::setClass(Class newCls, UNUSED_WITHOUT_PTRAUTH objc_object *obj)
{
// Match the conditional in isa.h.
#if __has_feature(ptrauth_calls) || TARGET_OS_SIMULATOR
# if ISA_SIGNING_SIGN_MODE == ISA_SIGNING_SIGN_NONE
// No signing, just use the raw pointer.
uintptr_t signedCls = (uintptr_t)newCls;
# elif ISA_SIGNING_SIGN_MODE == ISA_SIGNING_SIGN_ONLY_SWIFT
// We're only signing Swift classes. Non-Swift classes just use
// the raw pointer
uintptr_t signedCls = (uintptr_t)newCls;
if (newCls->isSwiftStable())
signedCls = (uintptr_t)ptrauth_sign_unauthenticated((void *)newCls, ISA_SIGNING_KEY, ptrauth_blend_discriminator(obj, ISA_SIGNING_DISCRIMINATOR));
# elif ISA_SIGNING_SIGN_MODE == ISA_SIGNING_SIGN_ALL
// We're signing everything
uintptr_t signedCls = (uintptr_t)ptrauth_sign_unauthenticated((void *)newCls, ISA_SIGNING_KEY, ptrauth_blend_discriminator(obj, ISA_SIGNING_DISCRIMINATOR));
# else
# error Unknown isa signing mode.
# endif
Shiftcls = shiftcls = shiftcls
shiftcls_and_sig = signedCls >> 3;
#elif SUPPORT_INDEXED_ISA
// Indexed isa only uses this method to set a raw pointer class.
// Setting an indexed class is handled separately.
cls = newCls;
#else // Nonpointer isa, no ptrauth
Shiftcls = shiftcls = shiftcls
shiftcls = (uintptr_t)newCls >> 3;
#endif
}
Copy the code
- And it turns out that ISA is actually a combination called ISA_t
union isa_t {
isa_t() { }
isa_t(uintptr_t value) : bits(value) { }
uintptr_t bits;
private:
// Accessing the class requires custom ptrauth operations, so
// force clients to go through setClass/getClass by making this
// private.
Class cls;
public:
#if defined(ISA_BITFIELD)
struct {
ISA_BITFIELD; // defined in isa.h
};
bool isDeallocating() {
return extra_rc == 0 && has_sidetable_rc == 0;
}
void setDeallocating() {
extra_rc = 0;
has_sidetable_rc = 0;
}
#endif
void setClass(Class cls, objc_object *obj);
Class getClass(bool authenticated);
Class getDecodedClass(bool authenticated);
};
Copy the code
-
The ISA_T contains bits, CLS (private), and an anonymous structure, so these three are actually shared memory, occupying 8 bytes of 64 bits.
-
ISA_BITFIELD source analysis
// Here is arm64
# if __arm64__
// ARM64 simulators have a larger address space, so use the ARM64e
// scheme even when simulators build for ARM64-not-e.
// Emulator ------------------------------------
# if __has_feature(ptrauth_calls) || TARGET_OS_SIMULATOR
# define ISA_MASK 0x007ffffffffffff8ULL
# define ISA_MAGIC_MASK 0x0000000000000001ULL
# define ISA_MAGIC_VALUE 0x0000000000000001ULL
# define ISA_HAS_CXX_DTOR_BIT 0
# define ISA_BITFIELD \
uintptr_t nonpointer : 1; \
uintptr_t has_assoc : 1; \
uintptr_t weakly_referenced : 1; \
uintptr_t shiftcls_and_sig : 52; \
uintptr_t has_sidetable_rc : 1; \
uintptr_t extra_rc : 8
# define RC_ONE (1ULL<<56)
# define RC_HALF (1ULL<<7)
# else
// Real mobile phone ------------------------------------
# define ISA_MASK 0x0000000ffffffff8ULL
# define ISA_MAGIC_MASK 0x000003f000000001ULL
# define ISA_MAGIC_VALUE 0x000001a000000001ULL
# define ISA_HAS_CXX_DTOR_BIT 1
# define ISA_BITFIELD \
uintptr_t nonpointer : 1; \
uintptr_t has_assoc : 1; \
uintptr_t has_cxx_dtor : 1; \
uintptr_t shiftcls : 33; /*MACH_VM_MAX_ADDRESS 0x1000000000*/ \
uintptr_t magic : 6; \
uintptr_t weakly_referenced : 1; \
uintptr_t unused : 1; \
uintptr_t has_sidetable_rc : 1; \
uintptr_t extra_rc : 19
# define RC_ONE (1ULL<<45)
# define RC_HALF (1ULL<<18)
# endif
// This time we will focus on the MACOS version
//MACOS------------------------------------
# elif __x86_64__
// This definition can be used as a bit and to remove shiftcls conveniently and powerfully
/ / into 2 base for 0000000000000000011111111111111111111111111111111111111111111000
// The 64-bit binary consists of three zeros + 44 ones + 11 zeros from the low to the high
# define ISA_MASK 0x00007ffffffffff8ULL
# define ISA_MAGIC_MASK 0x001f800000000001ULL
# define ISA_MAGIC_VALUE 0x001d800000000001ULL
# define ISA_HAS_CXX_DTOR_BIT 1
# define ISA_BITFIELD \
// Indicates whether to optimize the ISA pointer. 0 indicates a pure pointer. 1 indicates that isa contains more than the address of the class object
uintptr_t nonpointer : 1; \
// Associated object flag bit, '0' means unassociated, '1' means associated
uintptr_t has_assoc : 1; \
// Whether the object is a 'C ++' or 'Objc' destructor. If there is a destructor, the destructor logic needs to be done. If not, the object is released
uintptr_t has_cxx_dtor : 1; \
// Store the value of the class pointer. With pointer optimization enabled, there are '33' bits to store the class pointer in 'arm64' and '44' bits in 'x86_64'
uintptr_t shiftcls : 44; /*MACH_VM_MAX_ADDRESS 0x7fffffe00000*/ \
// Space used by the debugger to determine whether the current object is' real 'or' uninitialized '
uintptr_t magic : 6; \
// Refers to whether or not the object has been referred to an 'ARC' weak variable. Objects without weak references can be freed faster
uintptr_t weakly_referenced : 1; \
// Indicates whether the object is being released
uintptr_t unused : 1; \
// If the object reference count is greater than '10', this variable is used to store the carry
uintptr_t has_sidetable_rc : 1; \
For example, if the object's reference count is' 10 ', then 'extra_rc' is' 9 '. If the object's reference count is greater than '10', then 'has_sidetable_rc' is used above
uintptr_t extra_rc : 8
# define RC_ONE (1ULL<<56)
# define RC_HALF (1ULL<<7)
# else
# error unknown architecture for packed isa
# endif
Copy the code
- Breakpoint debugging isa association before and after
/ / before
(lldb) p/t newisa
(isa_t) $28 = {
bits = 0b0000000000000000000000000000000000000000000000000000000000000000
cls = nil
= {
nonpointer = 0b0
has_assoc = 0b0
has_cxx_dtor = 0b0
shiftcls = 0b00000000000000000000000000000000000000000000
magic = 0b000000
weakly_referenced = 0b0
unused = 0b0
has_sidetable_rc = 0b0
extra_rc = 0b00000000}}/ / associated
(lldb) p/x newisa
(isa_t) $5 = {
bits = 0x011d80010000823d
cls = 0x011d80010000823d NBPerson
= {
nonpointer = 0x0000000000000001
has_assoc = 0x0000000000000000
has_cxx_dtor = 0x0000000000000001
shiftcls = 0x0000000020001047
magic = 0x000000000000003b
weakly_referenced = 0x0000000000000000
unused = 0x0000000000000000
has_sidetable_rc = 0x0000000000000000
extra_rc = 0x0000000000000001}}Copy the code
Verify the isa
- Isa pointer verification
(lldb) x/4gx nb
0x101237d20: 0x011d80010000823d 0x0000000000000000
0x101237d30: 0x0000000100004018 0x0000000000000000
(lldb) p/x 0x011d80010000823d >> 3
(long) $11 = 0x0023b00020001047
(lldb) p/x 0x0023b00020001047 << 20
(long) $12 = 0x0002000104700000
(lldb) p/x 0x0002000104700000 >> 17
(long) $13 = 0x0000000100008238
(lldb) po 0x0000000100008238
NBPerson
Copy the code
- ISA_MAGIC_MASK validation
//ISA pointer 64-bit //ISA_MAGIC_MASK is also 64-bit and [3-46]44 bits just bit 1 with isa pointer bit and get object address (LLDB) p/x 0x00007FFFFFFFFff8&0x011D80010000823D (long) $16 = 0x0000000100008238 (lldb) po 0x0000000100008238 NBPersonCopy the code
- Shiftcls access
(lldb) p/x (long) 0x0000000020001047 << 3
(long) $24 = 0x0000000100008238
(lldb) po 0x0000000100008238
NBPerson
Copy the code
- All three ways
shiftcls
Is the key to isa associated objects - In __x86_64__ MACH_VM_MAX_ADDRESS = 0x7FFFFFE00000 The maximum virtual memory addressing space is 47 bits.
- Byte alignment is 8-byte alignment, which means that the address of a pointer can only be a multiple of 8, so the last three bits of the address of the pointer can only be 0, such as 0x8, 0x18, 0x30.
- Is not only used in isa associations
A domain
Also used toA consortium
Optimizing the memory of an ISA pointer to 8 bytes really does not waste any position