Code exercise: CIFAR10
About CIFAR10
-
This is an announcement data set containing 10 categories (‘ airplane ‘, ‘Automobile’, ‘Bird’, ‘Cat’, ‘Deer’, ‘Dog’, ‘Frog’, ‘Horse’, ‘ship’, ‘Truck’)
-
Image format: RGB3 layer color channel, the size of each layer color channel is 32 x 32
Build the model
import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
Use GPU training, which can be set in the menu "Code Execution Tools" -> "Change Runtime Type"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5.0.5.0.5), (0.5.0.5.0.5)))Shuffle is True for training, shuffle is false for test
# When training can be out of order to increase diversity, testing is not necessary
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=8,
shuffle=False, num_workers=2)
classes = ('plane'.'car'.'bird'.'cat'.'deer'.'dog'.'frog'.'horse'.'ship'.'truck')
Copy the code
Define the network
- The network, loss function and optimizer need to be defined
class Net(nn.Module) :
def __init__(self) :
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3.6.5)
self.pool = nn.MaxPool2d(2.2)
self.conv2 = nn.Conv2d(6.16.5)
self.fc1 = nn.Linear(16 * 5 * 5.120)
self.fc2 = nn.Linear(120.84)
self.fc3 = nn.Linear(84.10)
def forward(self, x) :
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1.16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
# Network on GPU
net = Net().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)
Copy the code
Train your network
for epoch in range(10) :Repeat multiple rounds
for i, (inputs, labels) in enumerate(trainloader):
inputs = inputs.to(device)
labels = labels.to(device)
The optimizer gradient returns to zero
optimizer.zero_grad()
# Forward propagation + back propagation + optimization
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
Output statistics
if i % 100= =0:
print('Epoch: %d Minibatch: %5d loss: %.3f' %(epoch + 1, i + 1, loss.item()))
print('Finished Training')
Copy the code
Detecting network effect
outputs = net(images.to(device))
_, predicted = torch.max(outputs, 1)
# Show the predicted results
for j in range(8) :print(classes[predicted[j]])
Copy the code
The following code can find out the corresponding image classification label and detect, so as to compare the accuracy
correct = 0
total = 0
for data in testloader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * correct / total))
Copy the code