— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — 2020.9.23 update — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —
I’m rewriting BFGS of x to make it cleaner
def BFGS(x) : # Quasi Newtonian method
epsilon, h, maxiter = 10* * -5.10* * -5.10支那4
Bk = np.eye(x.size)
for iter1 in range(maxiter):
grad = num_grad(x, h)
if np.linalg.norm(grad) < epsilon:
return x
dk = -np.dot((np.linalg.inv(Bk)), grad)
ak = linesearch(x, dk)
x = x + dk*ak
yk = num_grad(x, h) -grad
sk = ak*dk
if np.dot(yk, sk) > 0:
Bs = np.dot(Bk,sk)
ys = np.dot(yk,sk)
sBs = np.dot(np.dot(sk,Bk),sk)
Bk = Bk - 1.0*Bs.reshape((n,1))*Bs/sBs + 1.0*yk.reshape((n,1))*yk/ys
return x
Copy the code
— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — 2020.9.23 update — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —
Numpy is the only library used, as long as the installation of this library should be able to run directly
import numpy as np
def f(x) : # Objective function
x1 = x[0]
x2 = x[1]
y = 100*((x2 - x1**2) * *2) + (x1-1) * *2
return y
def num_grad(x, h) : Gradient # o
df = np.zeros(x.size)
for i in range(x.size):
x1, x2 = x.copy(), x.copy() # use copy instead of assignment (=) because in Python = is an alias, not a copy (c/ C ++)
x1[i] = x[i] - h
x2[i] = x[i] + h
y1, y2 = f(x1), f(x2)
df[i] = (y2-y1)/(2*h)
return df
def num_hess(x, h) : # Find Hess matrix
hess = np.zeros((x.size, x.size))
for i in range(x.size):
x1 = x.copy()
x1[i] = x[i] - h
df1 = num_grad(x1, h)
x2 = x.copy()
x2[i] = x[i] + h
df2 = num_grad(x2, h)
d2f = (df2 - df1) / (2 * h)
hess[i] = d2f
return hess
def linesearch(x, dk) : Step # for long
ak = 1
for i in range(20):
newf, oldf = f(x + ak * dk), f(x)
if newf < oldf:
return ak
else:
ak = ak / 4 Newf is smaller than oldf (ak=ak/2).
return ak
def steepest(x) : # Fastest descent method
epsilon, h, maxiter = 10* * -5.10* * -5.10支那4
for iter1 in range(maxiter):
grad = num_grad(x, h)
if np.linalg.norm(grad) < epsilon:
return x
dk = -grad
ak = linesearch(x, dk)
x = x + ak * dk
return x
def newTonFuction(x) : # Newton's method
epsilon, h1, h2, maxiter = 10* * -5.10* * -5.10* * -5.10支那4
for iter1 in range(maxiter):
grad = num_grad(x, h1)
if np.linalg.norm(grad) < epsilon:
return x
hess = num_hess(x, h2)
dk = -np.dot((np.linalg.inv(hess)), grad)
x = x + dk
return x
def BFGS(x) : # Quasi Newtonian method
epsilon, h, maxiter = 10* * -5.10* * -5.10支那4
Bk = np.eye(x.size)
for iter1 in range(maxiter):
grad = num_grad(x, h)
if np.linalg.norm(grad) < epsilon:
return x
dk = -np.dot((np.linalg.inv(Bk)), grad)
ak = linesearch(x, dk)
x = x + dk*ak
yk = num_grad(x, h) -grad
sk = ak*dk
if np.dot(yk.reshape(1, grad.shape[0]), sk) > 0:
T0 = np.dot(Bk, SK) t1 = np.dot(T0. Shape [0], 1) sk.shape (1, SK.shape [0]) 0 0 = np.dot(T1, 0 Bk) temp1 = np.dot(np.dot(sk.reshape(1, sk.shape[0]), Bk), sk) tmp0 = np.dot(yk.reshape(yk.shape[0], 1), yk.reshape(1, yk.shape[0])) tmp1 = np.dot(yk.reshape(1, yk.shape[0]), sk) Bk = Bk - temp0 / temp1 + tmp0 / tmp1 '''
# The second way to directly write the formula implementation
Bk = Bk - np.dot(np.dot(np.dot(Bk, sk).reshape(sk.shape[0].1), sk.reshape(1, sk.shape[0])), Bk)/np.dot(np.dot(sk.reshape(1, sk.shape[0]), Bk), sk) + np.dot(yk.reshape(yk.shape[0].1), yk.reshape(1, yk.shape[0])) / np.dot(yk.reshape(1, yk.shape[0]), sk)
return x
Array ([0.999960983973235, 0.999921911551354]) #
x0 = np.array([0.7.0.9]) # initial solution
x = steepest(x0) Call the fastest descent method
print("The final solution vector of the fastest descent method:",x)
print("The final solution of the fastest descent method:",f(x))
print(' ')
x = newTonFuction(x0) Call Newton's method
print("Final solution vector of Newton's method:", x)
print("Final solution of Newton's method:", f(x))
print(' ')
x = BFGS(x0) Call the quasi-Newton method
print("Final solution vector of quasi Newtonian method:", x)
print("Final solution of quasi-Newton method:", f(x))
print(' ')
Copy the code
The results are as follows
The quasi Newtonian method feels troublesome, and I don’t have any ideas to change it for now, so let’s leave it at that