There is a goods

Current data volume of 9555695, paging query with limit, prior to optimization 16 s 938 ms execution: 16 s 831 ms, fetching: To fetch 347 ms (execution: 163 ms, 184 ms) after adjusting SQL as below;

Operation: Put the query condition into the sub-query, the sub-query only looks up the primary key ID, and then use the primary key determined in the sub-query to associate query other attribute fields;

Principle: reduce back table operations;

SELECT * FROM 'table_name' WHERE LIMIT 0,10;Copy the code
SQL SELECT * FROM 'table_name' WHERE main_tale RIGHT JOIN (SELECT * FROM 'table_name' WHERE LIMIT 0,10; ) Temp_table ON temp_table. Key = main_table. A primary keyCopy the code

One, foreword

MySQL > select * from ‘MySQL’;

mysql> select version(); + -- -- -- -- -- -- -- -- -- -- -- + | version () | + -- -- -- -- -- -- -- -- -- -- -- + | 5.7.17 | + -- -- -- -- -- -- -- -- -- -- - + 1 rowin set (0.00 sec)
Copy the code

Table structure:

mysql> desc test; +--------+---------------------+------+-----+---------+----------------+ | Field | Type | Null | Key | Default | Extra |  +--------+---------------------+------+-----+---------+----------------+ | id | bigint(20) unsigned | NO | PRI | NULL |  auto_increment | | val | int(10) unsigned | NO | MUL | 0 | | |source | int(10) unsigned    | NO   |     | 0       |                |
+--------+---------------------+------+-----+---------+----------------+
3 rows in set (0.00 sec)
Copy the code

Id is the autoincrement primary key, and val is a non-unique index.

A large amount of data, 5 million in total:

mysql> select count(*) from test;
+----------+
| count(*) |
+----------+
|  5242882 |
+----------+
1 row in set (4.25 sec)
Copy the code

We know that efficiency problems occur when the offset in the limit offset rows is large:

mysql> select * from test where val=4 limit300000, 5. +---------+-----+--------+ | id | val |source| + -- -- -- -- -- -- -- -- -- + + -- -- -- -- -- -- -- -- -- -- -- -- -- + | 3327622 | | 4 4 | | 3327632 | | 4 4 | | 3327642 | | 4 4 | | 3327652 | | 4 4 | | 3327662 |  4 | 4 | +---------+-----+--------+ 5 rowsin set (15.98 sec)
Copy the code

To achieve the same goal, we usually rewrite it as:

mysql> select * from test a inner join (select id from test where val=4 limit300000, 5) b on Anderson, d = b.i d; +---------+-----+--------+---------+ | id | val |source | id      |
+---------+-----+--------+---------+
| 3327622 |   4 |      4 | 3327622 |
| 3327632 |   4 |      4 | 3327632 |
| 3327642 |   4 |      4 | 3327642 |
| 3327652 |   4 |      4 | 3327652 |
| 3327662 |   4 |      4 | 3327662 |
+---------+-----+--------+---------+
5 rows in set (0.38 sec)
Copy the code

The time difference is obvious.

Why the above results? Select * from test where val=4 limit 300000,5; Query process:

  • Query index leaf node data.
  • Query all required field values on the cluster index according to the primary key value on the leaf node.
Something like this:
As above, a query is required
300005 timesIndex node, query 30005 cluster index data, filter out the first 300000 results, and extract the last 5. MySQL spends a lot of random I/O queries on clustered index data, and 300,000 random I/O queries do not show up in the result set.
The question must be asked: since you started with an index, why not go down the index leaf nodes to the final five nodes and then query the actual data in the clustered index? This only takes 5 random I/ OS, similar to the process shown below
Actually, I was gonna ask you the same question.

confirmed

Let’s verify the above inference in practice:
In order to confirm
Select * from test where val=4 limit 300000,5We need to know if MySQL has a way to count the number of times a data node is queried by an index node in a SQL query. I tried the Handler_read_* series first, and unfortunately none of the variables met the criteria.
I can only confirm this indirectly:
InnoDB has buffer pools. It contains recently accessed data pages, including data pages and index pages. So we need to run two SQL to compare the number of data pages in the buffer pool. The prediction is run
Select * from test a inner join (select id from test where val=4 LIMIT 3000005);After that, the number of data pages in the buffer pool is much less
Select * from test where val=4 limit 300000,5;Because the previous SQL only accessed the data page 5 times, and the next SQL accessed the data page 30,005 times.
Select * from test where val=4 limit 300000,5
 mysql> select index_name,count(*) from information_schema.INNODB_BUFFER_PAGE where INDEX_NAME in('val'.'primary') and TABLE_NAME like '%test%'group by index_name; Emptyset (0.04 sec)
Copy the code
As you can see, there are no data pages for the test table in the buffer pool.
mysql> select * from test where val=4 limit300000, 5. +---------+-----+--------+ | id | val |source| + -- -- -- -- -- -- -- -- -- + + -- -- -- -- -- -- -- -- -- -- -- -- -- + | 3327622 | | 4 4 | | 3327632 | | 4 4 | | 3327642 | | 4 4 | | 3327652 | | 4 4 | | 3327662 | 4 | 4 | +---------+-----+--------+ 5 rowsin set(26.19 SEC) mysql> select index_name,count(*) from information_schema.innodb_buffer_pagewhere INDEX_NAME in('val'.'primary') and TABLE_NAME like '%test%' group by index_name;
+------------+----------+
| index_name | count(*) |
+------------+----------+
| PRIMARY    |     4098 |
| val        |      208 |
+------------+----------+2 rows in set (0.04 sec)
Copy the code
As you can see, there are 4098 data pages and 208 index pages in the buffer pool for the test table.
Select * from test a inner join (select id from test where val=4 LIMIT 3000005);To prevent the impact of the previous experiment, we need to clear the buffer pool and restart mysql.
mysqladmin shutdown
/usr/local/bin/mysqld_safe &
Copy the code
mysql> select index_name,count(*) from information_schema.INNODB_BUFFER_PAGE where INDEX_NAME in('val'.'primary') and TABLE_NAME like '%test%' group by index_name;

Empty set (0.03 sec)
Copy the code
Run the SQL:
mysql> select * from test a inner join (select id from test where val=4 limit300000, 5) b on Anderson, d = b.i d; +---------+-----+--------+---------+ | id | val |source | id      |
+---------+-----+--------+---------+
| 3327622 |   4 |      4 | 3327622 |
| 3327632 |   4 |      4 | 3327632 |
| 3327642 |   4 |      4 | 3327642 |
| 3327652 |   4 |      4 | 3327652 |
| 3327662 |   4 |      4 | 3327662 |
+---------+-----+--------+---------+
5 rows in set(0.09 SEC) mysql> select index_name,count(*) from information_schema.innodb_buffer_pagewhere INDEX_NAME in('val'.'primary') and TABLE_NAME like '%test%' group by index_name;
+------------+----------+
| index_name | count(*) |
+------------+----------+
| PRIMARY    |        5 |
| val        |      390 |
+------------+----------+
2 rows in set (0.03 sec)
Copy the code
The first SQL loaded 4098 pages into the buffer pool, while the second SQL loaded only 5 pages into the buffer pool. In line with our predictions. It also confirms why the first SQL was slow: a large number of useless rows were read (300,000) and then discarded.


In addition, this can cause a problem: loading a lot of data pages into the buffer pool, which will pollute the buffer pool and occupy the buffer pool space. Problems encountered
To ensure that the buffer pool is empty on every restart, we need to turn off innodb_buffer_pool_dump_at_shutdown and innodb_buffer_pool_load_at_startup, These options control how much data is dumped from the buffer pool when the database is shut down and how much data is loaded onto disk when the database is started.