NN of TF: Using neural network algorithm to train and predict slope and intercept of data set (randomly generating 100 numbers with primary function) based on Tensorflow
directory
The output
Code design
The output
Code design
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow as tf
import numpy as np
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data*0.1 + 0.3
Weights = tf.Variable(tf.random_uniform([1] -1.0.1.0))
biases = tf.Variable(tf.zeros([1]))
y = Weights*x_data + biases
loss = tf.reduce_mean(tf.square(y-y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
#init = tf.initialize_all_variables()
init = tf.global_variables_initializer()
### create tensorflow structure end ###
sess = tf.Session()
sess.run(init)
for step in range(201):
sess.run(train)
if step % 10= =0:
print(step, sess.run(Weights), sess.run(biases))
Copy the code
TF: One of Tensorflow function applications, randomly generated 100 numbers, using Tensorflow training to make it close to the slope and intercept of a known function