This article is participating in Python Theme Month. See [activities]
The table used in this article is as follows:
Let’s look at the original situation:
Import pandas as pd df = pd.read_excel(r 'c :\Users\admin\Desktop\ test.xlsx ') print(df)Copy the code
result:
Classified Goods Physical store Sales Volume Online Cost of sales Selling Price 0 Fruit Apple 34 234 12 45 1 Home appliance TV 56 784 34 156 2 home appliance refrigerator 78 345 24 785 3 Books Python from getting started to giving up 25 34 13 89 4 Fruit grapes 789 56 7 398Copy the code
1. Maximize
1.1 Operating the Full Table
1.1.1 Obtain the maximum value of each column
Df = pd.read_excel(r'C:\Users\admin\Desktop\ test.xlsx ') print(df.max())Copy the code
result:
Category fruit products Grape physical store sales 789 online sales 784 Cost 34 Price 785 dtype: objectCopy the code
1.1.2 Find the maximum value of each row
Df = pd.read_excel(r'C:\Users\admin\Desktop\ test.xlsx ') print(df.max(axis=1))Copy the code
result:
0 234
1 784
2 785
3 89
4 789
dtype: int64
Copy the code
1.2 Operate on a single row or column
1.2.1 Obtain the maximum value of a single column
Df = pd.read_excel(r'C:\Users\admin\Desktop\ test.xlsx ') print(df[' sales '].max())Copy the code
result:
789
Copy the code
1.2.2 Find the maximum value of a single row
Df = pd.read_excel(r'C:\Users\admin\Desktop\ test.xlsx ') print(df.iloc[[0]].max())Copy the code
result:
Category fruit products Apple physical store sales 34 online sales 234 Cost 12 Price 45 dtype: objectCopy the code
1.3 Operate on multiple rows or columns
1.3.1 Maximize the number of columns
Df = pd read_excel (r 'C: \ Users \ admin \ Desktop \ test. XLSX') print (df [[' entity shop sales, "online sales"]]. Max ())Copy the code
result:
Physical store sales 789 online sales 784 dtype: Int64Copy the code
1.3.2 Maximize multiple rows
Df = pd.read_excel(r'C:\Users\admin\Desktop\ test.xlsx ') print(df.iloc[[0, 1]].max())Copy the code
result:
Category fruit products Apple physical store sales 56 online sales 784 Cost 34 Price 156 dType: objectCopy the code
2 is the minimum
2.1 Performing Operations on the Full Table
2.1.1 Minimize each column
Df = pd.read_excel(r'C:\Users\admin\Desktop\ test.xlsx ') print(df.min())Copy the code
result:
Category books Goods Python from Getting started to giving up In-store sales 25 Online sales 34 Cost 7 Price 45 dType: ObjectCopy the code
2.1.2 Minimize each row
Df = pd.read_excel(r'C:\Users\admin\Desktop\ test.xlsx ') print(df.min(axis=1))Copy the code
result:
0 12
1 34
2 24
3 13
4 7
dtype: int64
Copy the code
2.2 Operate on a single row or column
2.2.1 Minimizing a column
Df = pd.read_excel(r'C:\Users\admin\Desktop\ test.xlsx ') print(df.iloc[[0]].min())Copy the code
result:
25
Copy the code
2.2.2 Minimizing a row
Df = pd.read_excel(r'C:\Users\admin\Desktop\ test.xlsx ') print(df.iloc[[0]].median())Copy the code
result:
Category fruit products Apple physical store sales 34 online sales 234 Cost 12 Price 45 dtype: objectCopy the code
2.3 Perform operations on multiple rows or columns
2.3.1 Minimizing multiple columns
Df = pd read_excel (r 'C: \ Users \ admin \ Desktop \ test. XLSX') print (df [[' entity shop sales, "online sales"]]. The min ())Copy the code
result:
Sales in stores 25 online 34 dtype: int64Copy the code
2.3.2 Minimizing multiple rows
Df = pd.read_excel(r'C:\Users\admin\Desktop\ test.xlsx ') print(df.iloc[[0, 1]].min())Copy the code
result:
Physical store sales 45.0 line classification Household appliances TV physical store sales 34 Online sales 234 Cost 12 Price 45 dType: objectCopy the code