markdown

  • Other contents of the series
✓ The popular manipulation of markdown (1) ✓ Popular manipulation of latex (2)Copy the code
  • In this paper, the target
    • It mainly introduces markdown anchor points, index footnotes, check box and selection box, table display position and symbol display position, drawing flow chart
    • Some commonly used markdown commands

The anchor

  • Home directory setting anchor point:

    • Return to home directory:[#markdown]-The higher the title
  • Anchor points set in the paper:

    • Set anchor points:<b id=" anchor test 1"> Set anchor 1</b>Set anchor point 1
    • Reference anchor point:[Anchor test 1](# anchor test 1)-Anchor point test 1
    • Set anchor point 2:<a name=" anchor test 2"> Set anchor 2</a>-Set anchor point 2
    • Reference anchor point:<a href="#锚点测试2">锚点测试2</a>-Anchor test 2
  • Markdown sets the anchor point. GIF

Index & footnote

  • This is an index test

    • Set up the index^ [1] : https://zhuanlan.zhihu.com/p/400027233 "insight into your server performance." "
    • Navigate to Insight into Your Server Performance by referencing the index^ [1]-1 ^
    • Reference the index to navigate to “Keyword Extraction”(2 ^]-2 ^
  • This is a footnote test

    • Set the footnotes[^1]: Here is footnote 1
    • Footnote. There’s a footnote here[^ 1]– > footnotes1.
    • Footnote. There’s a footnote here[^ 2)– > footnotes2.
  • Markdown sets indexes and footnotes

The hook

  • Optional box source
* [x] check * [] discheck <ul> <li class="task-list-item"><input type="checkbox"> Java</li> <li class="task-list-item"><input type="checkbox" disabled="" checked=""> Php</li> </ul>Copy the code
  • check
  • discheck
  • Java
  • Php
  • Check and cross
&check;  
&cross;
Copy the code



  • Check images are available on Github
toDo | date
:------------ | :-------------
:white_check_mark: | :heavy_check_mark:
Copy the code

Table display position

  • Table on the left
%%html <style> table {margin-left: 0 ! important; } </style>Copy the code
abc def
bar
bar baz

Character position

$\sum_{I =1 \to \infty}^{\infty}$Copy the code


i = 1 up up \sum_{i=1 \to \infty}^{\infty}

$\ displayStyle \sum_{I =1 \to \infty}^{\infty}$Copy the code


i = 1 up up \displaystyle \sum_{i=1 \to \infty}^{\infty}

$\sum\limits_{I =1 \to \infty}^{\infty}$Copy the code


i = 1 up up \sum\limits_{i=1 \to \infty}^{\infty}

$\sum\nolimits_{I =1 \to \infty}^{\infty}$Copy the code


i = 1 up up \sum\nolimits_{i=1 \to \infty}^{\infty}

Piecewise function, derivation function

$$\begin{aligned} P_1 &= P(X_n=i_n|X_0=i_0,X_1=i_1,\dots,X_{n-1}=i_{n-1})P(X_0=i_0,X_1=i_1,\dots,X_{n-1}=i_{n-1}) \\&= P_ {i_ (n - 1} i_n} P (X_0 = i_0, X_1 = i_1, \ dots, X_ {}, n - 1 = i_ {}, n - 1)} {aligned \ \ end tag derivated} {function $$Copy the code

P 1 = P ( X n = i n X 0 = i 0 . X 1 = i 1 . . X n 1 = i n 1 ) P ( X 0 = i 0 . X 1 = i 1 . . X n 1 = i n 1 ) = p i n 1 i n P ( X 0 = i 0 . X 1 = i 1 . . X n 1 = i n 1 ) (Function derivation) \begin{aligned} P_1 &= P(X_n=i_n|X_0=i_0,X_1=i_1,\dots,X_{n-1}=i_{n-1})P(X_0=i_0,X_1=i_1,\dots,X_{n-1}=i_{n-1}) \\&= P_ {i_ (n – 1} i_n} P (X_0 = i_0, X_1 = i_1, \ dots, X_ {}, n – 1 = i_ {}, n – 1)} {aligned \ \ end tag derivated} {function
$$\begin{aligned} P(X_0=i_0,\dots,X_n=i_n)&=P(X_n=i_n|X_0=i_0,\dots,X_{n-1}=i_{n-1})P(X_0=i_0,X_1=i_1,\dots,X_{n-1}=i_{n-1}) \\ P (X_0 = i_0, \ dots, X_n = i_n) & = p_ {i_ i_n} {n - 1} P (X_0 = i_0, \ dots, X_ {}, n - 1 = i_ {}, n - 1)} {aligned \ \ end tag alignment} {equation $$Copy the code

P ( X 0 = i 0 . . X n = i n ) = P ( X n = i n X 0 = i 0 . . X n 1 = i n 1 ) P ( X 0 = i 0 . X 1 = i 1 . . X n 1 = i n 1 ) P ( X 0 = i 0 . . X n = i n ) = p i n 1 i n P ( X 0 = i 0 . . X n 1 = i n 1 ) (Equation alignment) \begin{aligned} P(X_0=i_0,\dots,X_n=i_n)&=P(X_n=i_n|X_0=i_0,\dots,X_{n-1}=i_{n-1})P(X_0=i_0,X_1=i_1,\dots,X_{n-1}=i_{n-1}) \\ P (X_0 = i_0, \ dots, X_n = i_n) & = p_ {i_ i_n} {n – 1} P (X_0 = i_0, \ dots, X_ {}, n – 1 = i_ {}, n – 1)} {aligned \ \ end tag alignment} {equation
$$dp[i][j] = \begin{cases} 0 & j = 0 \\ \min\{ dp[i][k] + dp[(i+ k + 1) \% n][j - k - 1] + sum(i,j) \} & 0 \leq k < j \end{cases} \tag{segment function}$$Copy the code

d p [ i ] [ j ] = { 0 j = 0 min { d p [ i ] [ k ] + d p [ ( i + k + 1 ) % n ] [ j k 1 ] + s u m ( i . j ) } 0 Or less k < j (Piecewise function) dp[i][j] = \begin{cases} 0 & j = 0 \\ \min\{ dp[i][k] + dp[(i+ k + 1) \% n][j – k – 1] + sum(i,j) \} & 0 \leq k < j \end{cases} \tag{segment function}

The flow chart

Graph LR (square) - - > B (rounded corners) - > B C condition of {A} -- > C | A | = 1 D results of [1] -- > C | A = 2 | E [result] 2 F [transverse flow diagram]Copy the code

Matrix formula

$$\begin{bmatrix}
{p_{11}}&{p_{12}}&{\cdots}&{p_{1m}}\\
{p_{21}}&{p_{22}}&{\cdots}&{p_{2m}}\\
{\vdots}&{\vdots}&{\ddots}&{\vdots}\\
{p_{m1}}&{p_{m2}}&{\cdots}&{p_{mm}}\\
\end{bmatrix}$$
Copy the code

[ p 11 p 12 p 1 m p 21 p 22 p 2 m p m 1 p m 2 p m m ] \begin{bmatrix} {p_{11}}&{p_{12}}&{\cdots}&{p_{1m}}\\ {p_{21}}&{p_{22}}&{\cdots}&{p_{2m}}\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {p_{m1}}&{p_{m2}}&{\cdots}&{p_{mm}}\\ \end{bmatrix}

Code block & splitter line

# This is a code block for R
library(ggplot)
Copy the code

# This is a python code block
import pandas as pd
Copy the code

Other common markdown commands

  • The Greek letter
The input According to The input According to The input According to The input According to
\alpha
Alpha. \alpha
\rho
rho \rho
\beta
Beta. \beta
\Sigma
Σ \Sigma
\gamma
gamma \gamma
\Gamma
Γ \Gamma
\delta
Delta t. \delta
\Delta
Δ \Delta
\epsilon
ϵ \epsilon
\sigma
sigma \sigma
\zeta
zeta \zeta
\tau
tau \tau
\eta
eta \eta
\tau
tau \tau
theta
Theta. \theta
\Theta
Θ \Theta
\iota
ι \iota
\kappa
κ \kappa
\phi
ϕ \phi
\Phi
Φ \Phi
\lambda
Lambda. \lambda
\Lambda
Λ \Lambda
\mu
mu \mu
\chi
χ \chi
\nu
argument \nu
N \xi
Is deduced \xi
\Xi
Ξ \Xi
\upsilon
nu \upsilon
\Upsilon
Υ \Upsilon
\pi
PI. \pi
\Pi
Π \Pi
\psi
Bits of \psi
\Psi
Ψ \Psi
\omega
Omega. \omega
\Omega
Ω \Omega
  • A collection of character
The input According to The input According to The input According to
\emptyset
\emptyset
\in
\in
\notin
\notin
\subset
\subset
\supset
\supset
\subseteq
\subseteq
\supseteq
\supseteq
\bigcap
\bigcap
\bigcup
\bigcup
\bigvee
\bigvee
\bigwedge
\bigwedge
\biguplus
\biguplus
\because
\because
\therefore
\therefore
\forall
\forall
\exists
\exists
\not\subset
\not\subset
\not<
\not<
\not>
\not>
\not=
indicates \not=
  • The derivative of the integral
The input According to The input According to The input According to
\int
\int
\iint
\iint
\iiint
\iiint
\iiiint
\iiiint \iiiint
\oint
30 \oint
\prime
\prime
\lim
lim \lim
\infty
up \infty
\nabla
\nabla

latext


  1. Here is footnote 1↩
  2. This is footnote 2↩