This is a markdwon grammar tutorial
And welcome to visit my blog
About the markdown
Markdown is text, similar to HTML, with fewer syntactic tags than HTML text, making it easy to write
The title of grammar
1 # # # title title 2 # 3 # # # # # # title headlines 5 # 4 # # # # # # # # # # title 6 shortcut: h1 + tapCopy the code
The list of
Ordered list: 1. List1 2. List2
Unordered list: - list1 * list2 - List3 - list4
Task list: - [] Unfinished Task 1 - [x] Completed Task 1
Reference list: > ref1 > ref2Copy the code
Text style syntax
** Bold ** [Ctrl+B] __ Bold 2__ _ Tilt _ * Tilt * ~~ Delete line ~~Copy the code
Image display or link display
Link grammar: making [I] (https://github.com/ChenWoyao)
Picture syntax:! [Alt handsome boy] (. / static/img/bg. PNG)Copy the code
Form the grammar
| th1 | th2 | th3 | |-- |-- |-- | | td1 | td2 | td3 | | td1 | td2 | td3 |Copy the code
Block syntax
'from urllib import parse' from urllib import parse
Said a code block (diff, js, PHP, sh syntax support) ` ` ` js data = {' a ':' test '} ` ` ` < pre > data = {' a ':' test '} < / pre >Copy the code
annotation
<! -- Comment --> shortcut key: CMD + /Copy the code
Directories and anchors
To display a directory tree, write: ├ ─ ─ [README. Md] (# README) ├ ─ ─ [build] # (build) │ ├ ─ ─ [webpack. Base. Js] (# webpack - base) │ ├ ─ ─ ├─ ├─ [# pack-lock](# pack-lock) ├─ [# pack-lock](# pack-lock) ├─ [# pack-lock](# pack-lock) ├ ─ ─ [package. Json] (# package. Json) └ ─ ─ (SRC) # (SRC)
or
- [README.md] (#readme)
- [build] (#build)
- [webpack.base.js] (#webpack-base)
- [webpack.client.js] (#webpack-client)
- [webpack.server.js] (#webpack-server)
- [package-lock.json] (#package-lock)
- [package.json] (#package.json)
- [src] (#src)
Corresponding anchor point DOM: ## readme ## build ### webpack-base ### webpack-client ### webpack-server ## ackage-lock ## package.json ## src
or
readme
build
Copy the code
The divider
-- -- -- -- -- -- -- -- -- -- -- -- -- [hitting Tab shortcut: after hr] * * * * * * * * * * * * * = = = = = = = = = = = = =Copy the code
The formula
$$\sum_{i=1}^n a_i=0$$
$$f(x_1,x_x,\ldots,x_n) = x_1^2 + x_2^2 + \cdots + x_n^2$$
$$\sum^{j-1}_{k=0}{\widehat{\gamma}_{kj} z_k}$$
Copy the code