A list,
The law of uniform linear motion is explained by vertical upthrow motion, and the method of dimensionless calculation is introduced. The relationship between height and time, speed and time, height and speed in uniform linear motion is illustrated by pictures.
Ii. Source code
% Speed and height of movement of the vertical upcast object clear % clear variable g=10; % acceleration of gravity v0=10:5:40; % initial velocity vector t=0:0.1:4; Meshgrid (V0,T) = meshGrid (V0,T); % Initial velocity and time matrix V=V0-g*T; % velocity matrix H=V0.*T-g*T.^2/2; % height matrix figure % Create graph window %plot(t,V,'LineWidth'.2% Plot (t,V(:,1),'o-',t,V(:,2),'d-',t,V(:,3),'s-',t,V(:,4),'p-'. t,V(:,5),'h-',t,V(:,6),'< -,t,V(:,7),> '-'Grid on % + grid n=length(v0); % number of initial speeds leg=[repmat('\itv\rm_0=',n,1),num2str(v0'),repmat('m/s',n,1)]; % Initial speed string legend(leg) % inserts the initial speed legend fs=16; % font size title('The velocity of a vertically thrown object in relation to time.'.'FontSize', title xlabel (fs) %'time, itt, rm/s'.'FontSize',fs) % ylabel('speed \ itv \ \ cdots rm/m ^ - ^ 1'.'FontSize',fs)% y label [vm,im]=min(abs(V)); % Minimum speed subscript tm=t(im); Plot (tm,zeros(n,1),'o'Text (tm,zeros(n,1),num2str(tm'),'FontSize',fs)% mark time figure % create graph window %plot(t,H,'LineWidth'.2% Plot (t,H(:,1),'o-',t,H(:,2),'d-',t,H(:,3),'s-',t,H(:,4),'p-'. t,H(:,5),'h-',t,H(:,6),'< -,t,H(:,7),> '-'Grid on % % legend(leg,2) % Insert initial speed legend title('Height of a vertical projectile in relation to time'.'FontSize', title xlabel (fs) %'time, itt, rm/s'.'FontSize',fs) % ylabel('height \ ith \ rm/m'.'FontSize',fs) % y % y % y2/2; % Max height hold on % hold image STEM (tm,hm,The '-'% Draw the maximum height bar graph text(tm,hm,num2str(hm'),'FontSize',fs)% mark maximum height v0=0:40; % dense initial velocity vector tm=v0/g; % time to peak hm=v0.^2/2/g; % maximum height plot(tm,hm,'-'.'LineWidth'.2) % Draw the maximum height curveCopy the code
3. Operation results
Fourth, note
Version: 2014 a