A list,
Image registration based on matlab mutual information
Part of the source code
close all
clear all
tic
x0=[50; 50; - 15; 0.5]; % Initial points, [X, Y, angle, scaling]
% Select them as close to the matching points as possible
% by guessing; otherwize, it will fail.
[x, fval]=fminsearch(@image_registr_MI,x0) % Optimization using 'fminsearch'
%
% Display
%
load image
IM1=double(IM1);
IM2=double(IM2);
IM2=imresize(IM2, x(4), 'bilinear');
J=imrotate(double(IM2), x(3),'bilinear'); %rotated cropped IMAGE2
function f=image_registr_MI(x)
load image
IM1=double(IM1);
IM2=double(IM2);
IM2=imresize(IM2, x(4), 'bilinear');
J=imrotate(double(IM2), x(3),'bilinear'); %rotated cropped IMAGE2
if n1>n3-x(1) /2
f=1000;
message=strvcat('The scaling factor is too small.'.'Press Ctrl+C to stop.'.'Increase x0(4) and restart.');
disp('Press Ctrl+C to stop.')
Errordlg(message)
pause;
else
if x(1)>n3-n1
x(1)=n3-n1- 1;
IM1(1:n1, 1:n2)=255;
end
if x(2)>n4-n2
x(2)=n4-n2- 1;
IM1(1:n1, 1:n2)=255;
end
if x(1)< 0x(1)=0;
IM1(1:n1, 1:n2)=255;
end
if x(2)< 0x(2)=0;
IM1(1:n1, 1:n2)=255;
end
xt=1:n1;
yt=1:n2;
xx=round(xt+x(1));
yy=round(yt+x(2));
IM2=round(J(xx, yy)); % selecting part of IMAGE2 matching the size of IMAHE1
rows=size(IM1,1);
cols=size(IM2,2);
N=256;
h=zeros(N,N);
for ii=1:rows; % col
for jj=1:cols; % rows
h(IM1(ii,jj)+1,IM2(ii,jj)+1)= h(IM1(ii,jj)+1,IM2(ii,jj)+1) +1;
end
end
[r,c] = size(h);
b= h./(r*c); % normalized joint histogram
y_marg=sum(b); %sum of the rows of normalized joint histogram
x_marg=sum(b'); %sum of columns of normalized joint histogran Hy=0;
for i=1:c; % col
if( y_marg(i)==0 )
%do nothing
else
Hy = Hy + -(y_marg(i)*(log2(y_marg(i)))); %marginal entropy for image 1
end
end
Hx=0;
for i=1:r; %rows
if( x_marg(i)==0 )
%do nothing
else
Hx = Hx + -(x_marg(i)*(log2(x_marg(i)))); %marginal entropy for image 2
end
end
h_xy = -sum(sum(b.*(log2(b+(b==0))))); % joint entropy f=-(Hx+Hy-h_xy); % Mutual information %x endCopy the code
Third, the operation result
Fourth, note
Version: 2014 a