Welcome to my GitHub
Github.com/zq2599/blog…
Content: all original article classification summary and supporting source code, involving Java, Docker, Kubernetes, DevOPS, etc.;
This paper gives an overview of
- This article is the eleventh in the Hive Learning Notes series. Up to now, we have studied the UDF and UDAF, and finally there is another UDTF left in this article, which is also the main content of this article.
- User-defined table-generating Functions (UDTFs)
- In previous posts, we experienced explode as a built-in UDTF:
hive> select explode(address) from t3;
OK
province guangdong
city shenzhen
province jiangsu
city nanjing
Time taken: 0.081 seconds, Fetched: 4 row(s)
Copy the code
- This UDTF has two examples: splitting a column into multiple columns and splitting a column into multiple rows (multiple columns per row);
- And then the real thing;
Download the source code
- If you don’t want to code, you can download all the source code at GitHub, with the following address and link information:
The name of the | link | note |
---|---|---|
Project home page | Github.com/zq2599/blog… | The project’s home page on GitHub |
Git repository address (HTTPS) | Github.com/zq2599/blog… | The project source warehouse address, HTTPS protocol |
Git repository address (SSH) | [email protected]:zq2599/blog_demos.git | The project source warehouse address, SSH protocol |
- This git project has multiple folders. The application of this chapter is in the hiveudf folder, as shown in the red box below:
The preparatory work
To verify the function of UDTF, we need to prepare the table and data:
- Create table t16;
create table t16(
person_name string,
string_field string
)
row format delimited
fields terminated by '|'
stored as textfile;
Copy the code
- Create a local text file 016.txt with the following contents:
tom|1:province:guangdong
jerry|2:city:shenzhen
john|3
Copy the code
- Import data:
load data
local inpath '/home/hadoop/temp/202010/25/016.txt'
overwrite into table t16;
Copy the code
- Data ready, start coding;
Key points of UDTF development
- You need to inherit the GenericUDTF class;
- (StructObjectInspector, StructObjectInspector, StructObjectInspector, StructObjectInspector, StructObjectInspector)
- The return value of Initialize is of type StructObjectInspector, and the name and type of each column generated by UDTF are set to the return value;
- Overwrite the process method, in which the extra logical code is entered as soon as the data for each column is ready to be placed in the array, and execute the forward method once, which is a row of records;
- The close method is not required; if the business logic is finished, the code that frees resources can be executed there;
- Next, develop the UDTF in accordance with the above key points;
One column divided into many columns
- The next UDTF to be developed, named UDF_WordSplitSinglerOW, splits input arguments into multiple columns;
- The red box in the following figure shows the string_field field of an original record in t16, which is processed by UDF_WORDSPLitSinglerOW:
- After the fields in the red box above are processed by UDTF, one column becomes three columns. The name of each column is shown in the yellow box below, and the value of each column is shown in the red box below:
- So that’s what we’re going to do;
- Open the hiveudf project and create a new wordSplitSinglerow.java:
package com.bolingcavalry.hiveudf.udtf;
import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.exec.UDFArgumentLengthException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDTF;
import org.apache.hadoop.hive.serde2.objectinspector.*;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector.Category;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;
import java.util.ArrayList;
import java.util.List;
/ * * *@Description: Splits the specified field into multiple columns *@author: willzhao E-mail: [email protected]
* @date: 2020/11/5 for * /
public class WordSplitSingleRow extends GenericUDTF {
private PrimitiveObjectInspector stringOI = null;
private final static String[] EMPTY_ARRAY = {"NULL"."NULL"."NULL"};
/** * The logic for splitting a column into multiple columns is here *@param args
* @throws HiveException
*/
@Override
public void process(Object[] args) throws HiveException {
String input = stringOI.getPrimitiveJavaObject(args[0]).toString();
// Invalid string
if(StringUtils.isBlank(input)) {
forward(EMPTY_ARRAY);
} else {
// Split the string
String[] array = input.split(":");
// If the string array is illegal, return the original string and an error message
if(null==array || array.length<3) {
String[] errRlt = new String[3];
errRlt[0] = input;
errRlt[1] = "can not split to valid array";
errRlt[2] = "-";
forward(errRlt);
} else{ forward(array); }}}/** * Free resources is performed here, no resources need to be freed in this example *@throws HiveException
*/
@Override
public void close(a) throws HiveException {}@Override
public StructObjectInspector initialize(StructObjectInspector argOIs) throws UDFArgumentException {
List<? extends StructField> inputFields = argOIs.getAllStructFieldRefs();
// The current UDTF process only one parameter
if (1! = inputFields.size()) {throw new UDFArgumentLengthException("ExplodeMap takes only one argument");
}
// This UDTF only handles string types
if(! Category.PRIMITIVE.equals(inputFields.get(0).getFieldObjectInspector().getCategory())) {
throw new UDFArgumentException("ExplodeMap takes string as a parameter");
}
stringOI = (PrimitiveObjectInspector)inputFields.get(0).getFieldObjectInspector();
// Set of column names
ArrayList<String> fieldNames = new ArrayList<String>();
// The value of the column
ArrayList<ObjectInspector> fieldOIs = new ArrayList<ObjectInspector>();
// The first column name
fieldNames.add("id");
The inspector in the first column is of type string
fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
// The name of the second column
fieldNames.add("key");
// The inspector in the second column is of type string
fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
// The third column name
fieldNames.add("value");
// The inspector in the third column is of type string
fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
returnObjectInspectorFactory.getStandardStructObjectInspector(fieldNames, fieldOIs); }}Copy the code
- The focus of this code is the process method, which takes the input parameter and splits the string with a colon to get the array, then calls the forward method to generate a row with three columns.
Verify UDTF
Next, deploy wordSplitSinglerow.java as a temporary function and verify;
- After the encoding is complete, run the MVN clean package -u command in the pom. XML directory.
- In the target directory you get the file hiveudf-1.0-snapshot.jar
- Download the JAR to the Hive server. I put it in this directory: /home/hadoop/udf/
- In Hive session mode, run the following command to add the local JAR:
Add the jar/home/hadoop/udf/hiveudf - 1.0 - the SNAPSHOT. Jar;Copy the code
- Deploy temporary functions:
create temporary function udf_wordsplitsinglerow as 'com.bolingcavalry.hiveudf.udtf.WordSplitSingleRow';
Copy the code
- Perform the following SQL validation:
select udf_wordsplitsinglerow(string_field) from t16;
Copy the code
- The string_field field in each row is split into id, key, and value fields:
hive> select udf_wordsplitsinglerow(string_field) from t16;
OK
id key value
1 province guangdong
2 city shenzhen
3 can not split to valid array -
Time taken: 0.066 seconds, Fetched: 3 row(s)
Copy the code
Key points to note
- It is important to note that UDTF cannot appear in a SELECT statement with other fields. For example, the following SQL will fail:
select person_name,udf_wordsplitsinglerow(string_field) from t16;
Copy the code
- The error message is as follows:
hive> select person_name,udf_wordsplitsinglerow(string_field) from t16;
FAILED: SemanticException [Error 10081]: UDTF's are not supported outside the SELECT clause, nor nested in expressions
Copy the code
- SQL > select * from LATERAL VIEW; select * from LATERAL VIEW;
select t.person_name, udtf_id, udtf_key, udtf_value
from (
select person_name, string_field
from t16
) t LATERAL VIEW udf_wordsplitsinglerow(t.string_field) v as udtf_id, udtf_key, udtf_value;
Copy the code
- The specified fields and UDTF can be displayed as follows:
hive> select t.person_name, udtf_id, udtf_key, udtf_value
> from (
> select person_name, string_field
> from t16
> ) t LATERAL VIEW udf_wordsplitsinglerow(t.string_field) v as udtf_id, udtf_key, udtf_value;
OK
t.person_name udtf_id udtf_key udtf_value
tom 1 province guangdong
jerry 2 city shenzhen
john 3 can not split to valid array -
Time taken: 0.122 seconds, Fetched: 3 row(s)
Copy the code
Split a column into multiple rows (multiple columns per row)
- We have tried to split string_field into id, key, and value fields, but the total number of rows remains the same. In UDTF, we split string_field into multiple records, and each record has three fields.
- To import new data into the T16 table, create a text file 016_multi-. TXT with the following contents:
tom|1:province:guangdong,4:city:yangjiang
jerry|2:city:shenzhen
john|3
Copy the code
- Run the following command in the Hive session window to overwrite the existing contents of the T16 table with 016_multi-. TXT:
load data
local inpath '/home/hadoop/temp/202010/25/016_multi.txt'
overwrite into table t16;
Copy the code
- In the red box is the string_field value of a record. The UDTF we are going to develop will be separated by commas, and the two strings 1:province: Guangdong and 4:city: Yangjiang will be obtained. Then separate each string with a colon, and you get two id, key, and value records, i.e. multiple rows and columns:
- The expected UDTF result looks like this, with red and yellow boxes both coming from the string_field value of a single record:
- The only difference from WordSplitSingleRow is that the process method, WordSplitMultiRow, performs multiple forward operations. So there are multiple records:
package com.bolingcavalry.hiveudf.udtf;
import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.exec.UDFArgumentLengthException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDTF;
import org.apache.hadoop.hive.serde2.objectinspector.*;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector.Category;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;
import java.util.ArrayList;
import java.util.List;
/ * * *@Description: Splits the specified field into multiple rows, each row having multiple columns *@author: willzhao E-mail: [email protected]
* @date: 2020/11/5 for * /
public class WordSplitMultiRow extends GenericUDTF {
private PrimitiveObjectInspector stringOI = null;
private final static String[] EMPTY_ARRAY = {"NULL"."NULL"."NULL"};
/** * The logic for splitting a column into multiple columns is here *@param args
* @throws HiveException
*/
@Override
public void process(Object[] args) throws HiveException {
String input = stringOI.getPrimitiveJavaObject(args[0]).toString();
// Invalid string
if(StringUtils.isBlank(input)) {
forward(EMPTY_ARRAY);
} else {
// Separate with commas
String[] rowArray = input.split(",");
// Handle exceptions
if(null==rowArray || rowArray.length<1) {
String[] errRlt = new String[3];
errRlt[0] = input;
errRlt[1] = "can not split to valid row array";
errRlt[2] = "-";
forward(errRlt);
} else {
// Each element of rowArray is a string like "id:key:value"
for(String singleRow : rowArray) {
// Make sure the string is valid
if(StringUtils.isBlank(singleRow)) {
forward(EMPTY_ARRAY);
} else {
// Split the string
String[] array = singleRow.split(":");
// If the string array is illegal, return the original string and an error message
if(null==array || array.length<3) {
String[] errRlt = new String[3];
errRlt[0] = input;
errRlt[1] = "can not split to valid array";
errRlt[2] = "-";
forward(errRlt);
} else {
forward(array);
}
}
}
}
}
}
/** * Free resources is performed here, no resources need to be freed in this example *@throws HiveException
*/
@Override
public void close(a) throws HiveException {}@Override
public StructObjectInspector initialize(StructObjectInspector argOIs) throws UDFArgumentException {
List<? extends StructField> inputFields = argOIs.getAllStructFieldRefs();
// The current UDTF process only one parameter
if (1! = inputFields.size()) {throw new UDFArgumentLengthException("ExplodeMap takes only one argument");
}
// This UDTF only handles string types
if(! Category.PRIMITIVE.equals(inputFields.get(0).getFieldObjectInspector().getCategory())) {
throw new UDFArgumentException("ExplodeMap takes string as a parameter");
}
stringOI = (PrimitiveObjectInspector)inputFields.get(0).getFieldObjectInspector();
// Set of column names
ArrayList<String> fieldNames = new ArrayList<String>();
// The value of the column
ArrayList<ObjectInspector> fieldOIs = new ArrayList<ObjectInspector>();
// The first column name
fieldNames.add("id");
The inspector in the first column is of type string
fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
// The name of the second column
fieldNames.add("key");
// The inspector in the second column is of type string
fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
// The third column name
fieldNames.add("value");
// The inspector in the third column is of type string
fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
returnObjectInspectorFactory.getStandardStructObjectInspector(fieldNames, fieldOIs); }}Copy the code
Verify UDTF
Next, deploy wordsplitMultirow.java as a temporary function and validate it;
- After the encoding is complete, run the MVN clean package -u command in the pom. XML directory.
- In the target directory you get the file hiveudf-1.0-snapshot.jar
- Download the JAR to the Hive server. I put it in this directory: /home/hadoop/udf/
- If you are in the same Hive session mode, you need to clear the previous jar and function:
drop temporary function if exists udf_wordsplitsinglerow; Delete the jar/home/hadoop/udf/hiveudf - 1.0 - the SNAPSHOT. Jar;Copy the code
- In Hive session mode, run the following command to add the local JAR:
Add the jar/home/hadoop/udf/hiveudf - 1.0 - the SNAPSHOT. Jar;Copy the code
- Deploy temporary functions:
create temporary function udf_wordsplitmultirow as 'com.bolingcavalry.hiveudf.udtf.WordSplitMultiRow';
Copy the code
- Perform the following SQL validation:
select udf_wordsplitmultirow(string_field) from t16;
Copy the code
- The string_field field in each row is split into id, key, and value fields:
hive> select udf_wordsplitmultirow(string_field) from t16;
OK
id key value
1 province guangdong
4 city yangjiang
2 city shenzhen
3 can not split to valid array -
Time taken: 0.041 seconds, Fetched: 4 row(s)
Copy the code
- Use the syntax of LATERAL VIEW to try to check other fields. SQL is as follows:
select t.person_name, udtf_id, udtf_key, udtf_value
from (
select person_name, string_field
from t16
) t LATERAL VIEW udf_wordsplitmultirow(t.string_field) v as udtf_id, udtf_key, udtf_value;
Copy the code
- The results are as follows, in line with expectations:
hive> select t.person_name, udtf_id, udtf_key, udtf_value
> from (
> select person_name, string_field
> from t16
> ) t LATERAL VIEW udf_wordsplitmultirow(t.string_field) v as udtf_id, udtf_key, udtf_value;
OK
t.person_name udtf_id udtf_key udtf_value
tom 1 province guangdong
tom 4 city yangjiang
jerry 2 city shenzhen
john 3 can not split to valid array -
Time taken: 0.056 seconds, Fetched: 4 row(s)
Copy the code
- So far, HIVE three kinds of user-defined functions we are learning and practice completed, hope these content can give you some reference to practice;
You are not alone, Xinchen original accompany all the way
- Java series
- Spring series
- The Docker series
- Kubernetes series
- Database + middleware series
- The conversation series
Welcome to pay attention to the public number: programmer Xin Chen
Wechat search “programmer Xin Chen”, I am Xin Chen, looking forward to enjoying the Java world with you…
Github.com/zq2599/blog…