ArrayList profile
ArrayList is a collection class that holds elements of the same type.
Important information that can be obtained from source code
- ArryaList is implemented as an array
- The default size of the array is 10
- The ArrayList thread is not safe
- The maximum capacity of an ArrayList is the maximum integer.
- You can pass in a comparator to change the order of the list
An important method of ArrayList
grow(int minCapacity)
Method to increase the list capacity
/** * Increases the size of the list to ensure that it can hold at least the specified minimum number of elements@param minCapacity the desired minimum capacity
*/
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;
// New capacity = old capacity *1.5
int newCapacity = oldCapacity + (oldCapacity >> 1);
// If the new capacity is smaller than the specified minimum capacity, the specified minimum capacity is used as the new capacity
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
// If the new capacity is larger than the maximum capacity, to prevent overflow,
// Set the new capacity based on the specified minimum capacity
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
elementData = Arrays.copyOf(elementData, newCapacity);
}
Copy the code
Add (E E) Adds elements
/** * adds the specified element * to the end of the list@param e element to be appended to this list
* @return <tt>true</tt> (as specified by {@link Collection#add})
*/
public boolean add(E e) {
Make sure the list has enough space before adding an element
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}
Copy the code
Get (int index) Gets the element
/** * returns the specified subscript element *@param index index of the element to return
* @return the element at the specified position in this list
* @throws IndexOutOfBoundsException {@inheritDoc} * /
public E get(int index) {
rangeCheck(index);// subscript check
return elementData(index);
}
Copy the code
Delete element remove(int index)
/** * removes the element at the specified position. Move this position and the following elements to the left. Returns the old element * at that position@param index the index of the element to be removed
* @return the element that was removed from the list
* @throws IndexOutOfBoundsException {@inheritDoc} * /
public E remove(int index) {
rangeCheck(index);// Check the validity of index
modCount++;
E oldValue = elementData(index);
int numMoved = size - index - 1;
if (numMoved > 0)
// The position and the following elements are all moved forward
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
//list number of elements -1, all elements moved to the left, set the last element to null
elementData[--size] = null; // clear to let GC do its work
return oldValue;
}
Copy the code
Filters filter elements removeIf(Predicate<? super E> filter)
@Override
public boolean removeIf(Predicate<? super E> filter) {
Objects.requireNonNull(filter);
// figure out which elements are to be removed
// any exception thrown from the filter predicate at this stage
// will leave the collection unmodified
// Number of deleted elements
int removeCount = 0;
//BitSet is a class used to indicate the existence of various values.
// It places multiple values in a long[]. Each value in long[] can only be 0 or 1.
//0 indicates that the index does not exist. 1 indicates that the index does exist.
For example, if 1,6, and 7 are stored in long[], only one long is needed because the length of a long is 64bit
[000...76000010]; the first, sixth, and seventh bits are set to 1
final BitSet removeSet = new BitSet(size);
// Expected number of changes
final int expectedModCount = modCount;
final int size = this.size;
// Iterate over all elements
for (int i=0; modCount == expectedModCount && i < size; i++) {
@SuppressWarnings("unchecked")
final E element = (E) elementData[i];
// If the element matches the filter criteria
if (filter.test(element)) {
/ / tag in the BitSetremoveSet.set(i); Number of deleted elements +1removeCount++; }}if(modCount ! = expectedModCount) {throw new ConcurrentModificationException();
}
// shift surviving elements left over the spaces left by removed elements
final boolean anyToRemove = removeCount > 0;
if (anyToRemove) {
final int newSize = size - removeCount;
// Iterate over all elements
for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) {
// I is the next undeleted element
i = removeSet.nextClearBit(i);
// Move the undeleted element set to the front of the array
elementData[j] = elementData[i];
}
// Iterates over all elements after the undeleted element, sets all elements to null, and waits for collection
for (int k=newSize; k < size; k++) {
elementData[k] = null; // Let gc do its work
}
// Set the number of elements in the list
this.size = newSize;
if(modCount ! = expectedModCount) {throw new ConcurrentModificationException();
}
modCount++;
}
// Returns whether any elements have been deleted
return anyToRemove;
}
Copy the code
Full interpretation of source code
package java.util;
import java.util.function.Consumer;
import java.util.function.Predicate;
import java.util.function.UnaryOperator;
/**
*
* @author Josh Bloch
* @author Neal Gafter
* @see Collection
* @see List
* @see LinkedList
* @see Vector
* @since 1.2
*/
public class ArrayList<E> extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{
private static final long serialVersionUID = 8683452581122892189L;
/**
* DEFAULT_CAPACITY: 默认初始容量
*/
private static final int DEFAULT_CAPACITY = 10;
/**
* 空的共享示例
*/
private static final Object[] EMPTY_ELEMENTDATA = {};
/**
* Shared empty array instance used for default sized empty instances. We
* distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
* first element is added.
*/
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
/**
* 存储ArrayList的元素的数组缓冲区。ArrayList的容量是此数组缓冲区的长度。
*/
transient Object[] elementData; * 非私有化为了简化类的嵌套访问
/**
* ArrayList拥有的元素个数
*
* @serial
*/
private int size;
/**
* 指定初始容量,构造一个空的list
* @param initialCapacity the initial capacity of the list
* @throws IllegalArgumentException if the specified initial capacity
* is negative
*/
public ArrayList(int initialCapacity) {
if (initialCapacity > 0) {
this.elementData = new Object[initialCapacity];
} else if (initialCapacity == 0) {
this.elementData = EMPTY_ELEMENTDATA;
} else {
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
}
}
/**
* 构造一个空的list,默认初始容量为10
*/
public ArrayList() {
this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
}
/**
* 使用集合来构造一个list
*
* @param c the collection whose elements are to be placed into this list
* @throws NullPointerException if the specified collection is null
*/
public ArrayList(Collection<? extends E> c) {
elementData = c.toArray();
if ((size = elementData.length) != 0) {
// 如果返回的不是Object类型,那么新建一个数组,复制原来的元素并转换为Object类型
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, size, Object[].class);
} else {
// 空数组
this.elementData = EMPTY_ELEMENTDATA;
}
}
/**
* 将list数组的大小设置到和size一样大,来节省存储空间
*/
public void trimToSize() {
modCount++;
if (size < elementData.length) {
elementData = (size == 0)
? EMPTY_ELEMENTDATA
: Arrays.copyOf(elementData, size);
}
}
/**
* Increases the capacity of this <tt>ArrayList</tt> instance, if
* necessary, to ensure that it can hold at least the number of elements
* specified by the minimum capacity argument.
*
* @param minCapacity the desired minimum capacity
*/
public void ensureCapacity(int minCapacity) {
// list不等于空,最小扩容就是0,否则最小容量是10
int minExpand = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
// any size if not default element table
? 0
// larger than default for default empty table. It's already
// supposed to be at default size.
: DEFAULT_CAPACITY;
// 如果最小容量大于最小扩容,那么确保最小容量可用,将list扩容到最小容量
if (minCapacity > minExpand) {
ensureExplicitCapacity(minCapacity);
}
}
private void ensureCapacityInternal(int minCapacity) {
// 如果list为空,最小容量是10或者最小容量中较大的值
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
}
// 确保最小容量可用,将list扩容到最小容量
ensureExplicitCapacity(minCapacity);
}
// 保证最小容量: 防止内存溢出
private void ensureExplicitCapacity(int minCapacity) {
modCount++;
// overflow-conscious code
if (minCapacity - elementData.length > 0)
grow(minCapacity);
}
/**
* list的最大可分配大小.一些虚拟机需要在数组里保留一些头信息,获取更大的空间可
* 能会导致内存溢出.
*/
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
/**
* 增加list的容量,确保它至少可以存放指定的最小数量的元素.
* @param minCapacity the desired minimum capacity
*/
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;
// 新的容量=旧的容量*1.5
int newCapacity = oldCapacity + (oldCapacity >> 1);
// 如果新的容量小于指定的最小容量,那么以指定的最小容量作为新的容量
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
// 如果新的的容量大于最大限制容量,为了防止溢出,
// 根据指定的最小容量来设置新的容量
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
elementData = Arrays.copyOf(elementData, newCapacity);
}
private static int hugeCapacity(int minCapacity) {
if (minCapacity < 0) * 如果最小容量数字已经溢出了,抛异常
throw new OutOfMemoryError();
// 如果最小容量>Integer.MAX_VALUE - 8,那么最小容量
// 设为Integer.MAX_VALUE,否则最小容量设为Integer.MAX_VALUE-8
return (minCapacity > MAX_ARRAY_SIZE) ?
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;
}
/**
* 查询list中元素个数
*/
public int size() {
return size;
}
/**
* 查询list是否为空
*/
public boolean isEmpty() {
return size == 0;
}
/**
* 查询是否包含指定元素
*/
public boolean contains(Object o) {
return indexOf(o) >= 0;
}
/**
* 遍历list查询指定元素的位置.如果没有返回-1
*/
public int indexOf(Object o) {
if (o == null) {
for (int i = 0; i < size; i++)
if (elementData[i]==null)
return i;
} else {
for (int i = 0; i < size; i++)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
/**
* 查询某个元素最后出现的位置,没有的话返回-1.
*/
public int lastIndexOf(Object o) {
if (o == null) {
for (int i = size-1; i >= 0; i--)
if (elementData[i]==null)
return i;
} else {
for (int i = size-1; i >= 0; i--)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
/**
* 复制一个list,元素本身并不会被复制,相当于浅复制
*/
public Object clone() {
try {
ArrayList<?> v = (ArrayList<?>) super.clone();
v.elementData = Arrays.copyOf(elementData, size);
v.modCount = 0;
return v;
} catch (CloneNotSupportedException e) {
* this shouldn't happen, since we are Cloneable
throw new InternalError(e);
}
}
/**
* 返回一个包含所有元素并且顺序正确的数组.
*/
public Object[] toArray() {
return Arrays.copyOf(elementData, size);
}
/**
* 将list中的全部元素放到数组a中,并覆盖.
* 如果a的空间足够,那么直接覆盖a,多余的空间用null填充,
* 如果a中没有足够的空间,那么新生成一个数组,
* 并将list中的元素全部放进去,而a不变.
* @throws NullPointerException if the specified array is null
*/
@SuppressWarnings("unchecked")
public <T> T[] toArray(T[] a) {
if (a.length < size)
// Make a new array of a's runtime type, but my contents:
return (T[]) Arrays.copyOf(elementData, size, a.getClass());
System.arraycopy(elementData, 0, a, 0, size);
if (a.length > size)
a[size] = null;
return a;
}
//下标查找
@SuppressWarnings("unchecked")
E elementData(int index) {
return (E) elementData[index];
}
/**
* 返回指定下标元素
* @param index index of the element to return
* @return the element at the specified position in this list
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public E get(int index) {
rangeCheck(index);//下标检查
return elementData(index);
}
/**
* 根据下标来设置元素,返回旧的该位置的元素
* @param index index of the element to replace
* @param element element to be stored at the specified position
* @return the element previously at the specified position
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public E set(int index, E element) {
rangeCheck(index);
E oldValue = elementData(index);
elementData[index] = element;
return oldValue;
}
/**
* list末尾添加指定元素
* @param e element to be appended to this list
* @return <tt>true</tt> (as specified by {@link Collection#add})
*/
public boolean add(E e) {
//增加一个元素前,确保list空间足够
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}
/**
* 在制定位置增加新的元素,原来该位置的元素以及后边的元素全部往后挪一个位置.
* @param index index at which the specified element is to be inserted
* @param element element to be inserted
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public void add(int index, E element) {
rangeCheckForAdd(index);//检查index是否越界.
//确保空间足够
ensureCapacityInternal(size + 1); // Increments modCount!!
//将该位置及后边的元素右移
System.arraycopy(elementData, index, elementData, index + 1,
size - index);
//添加该元素
elementData[index] = element;
//元素个数+1
size++;
}
/**
* 删除指定位置的元素.将该位置及后边的元素左移.返回旧的该位置的元素
* @param index the index of the element to be removed
* @return the element that was removed from the list
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public E remove(int index) {
rangeCheck(index);//检查index合法性
modCount++;
E oldValue = elementData(index);
int numMoved = size - index - 1;
if (numMoved > 0)
//该位置及后面的元素全部往前移
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
//list元素个数-1,全部元素左移后,将最后一个元素置为null
elementData[--size] = null; // clear to let GC do its work
return oldValue;
}
/**
* 如果存在某元素,遍历删除第一个.
* @param o element to be removed from this list, if present
* @return <tt>true</tt> if this list contained the specified element
*/
public boolean remove(Object o) {
if (o == null) {
for (int index = 0; index < size; index++)
if (elementData[index] == null) {
//该位置及后面的元素全部往前移,并把最后一个元素置
//为null,list元素个数-1
fastRemove(index);
return true;
}
} else {
for (int index = 0; index < size; index++)
if (o.equals(elementData[index])) {
fastRemove(index);
return true;
}
}
return false;
}
/*
* 删除指定位置的元素,不检查index合法性,不返回被删除的元素的值
*/
private void fastRemove(int index) {
modCount++;
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; * clear to let GC do its work
}
/**
* 删除所有元素
*/
public void clear() {
modCount++;
// clear to let GC do its work
for (int i = 0; i < size; i++)
//设置元素为空
elementData[i] = null;
//list的元素个数置为0
size = 0;
}
/**
* 将集合c中的全部元素添加到list的尾部.
* @param c collection containing elements to be added to this list
* @return <tt>true</tt> if this list changed as a result of the call
* @throws NullPointerException if the specified collection is null
*/
public boolean addAll(Collection<? extends E> c) {
//集合转换为数组
Object[] a = c.toArray();
int numNew = a.length;
//如果容量足够,那么扩容
ensureCapacityInternal(size + numNew); // Increments modCount
//复制集合中的元素到list中
System.arraycopy(a, 0, elementData, size, numNew);
size += numNew;
//如果集合长度不为0,则添加成功
return numNew != 0;
}
/**
* 将集合c中的全部元素添加到list的指定位置,原来位置以及后面的元素往后移.
* @param index index at which to insert the first element from the
* specified collection
* @param c collection containing elements to be added to this list
* @return <tt>true</tt> if this list changed as a result of the call
* @throws IndexOutOfBoundsException {@inheritDoc}
* @throws NullPointerException if the specified collection is null
*/
public boolean addAll(int index, Collection<? extends E> c) {
rangeCheckForAdd(index);//检查index合法性
Object[] a = c.toArray();
int numNew = a.length;
//如果新的容量合法,那么扩容
ensureCapacityInternal(size + numNew); // Increments modCount
int numMoved = size - index;
if (numMoved > 0)
//将原来位置的元素以及后面的元素后移
System.arraycopy(elementData, index, elementData, index + numNew,
numMoved);
//将集合中的全部元素放进去
System.arraycopy(a, 0, elementData, index, numNew);
size += numNew;
return numNew != 0;
}
/**
* 将list中下标从fromIndex到toIndex的元素删除
* @throws IndexOutOfBoundsException if {@code fromIndex} or
* {@code toIndex} is out of range
* ({@code fromIndex < 0 ||
* fromIndex >= size() ||
* toIndex > size() ||
* toIndex < fromIndex})
*/
protected void removeRange(int fromIndex, int toIndex) {
modCount++;
int numMoved = size - toIndex;
//将下标从toIndex开始的全部元素往前移至fromIndex的位置.
System.arraycopy(elementData, toIndex, elementData, fromIndex,
numMoved);
// clear to let GC do its work
//新的list元素个数
int newSize = size - (toIndex-fromIndex);
for (int i = newSize; i < size; i++) {
//将超出下标范围的元素的值设为null
elementData[i] = null;
}
size = newSize;
}
/**
* 检查index合法性,越界抛出异常.这个方法并不检查index是否为负数.
* 当index为负数时,数组本身也会抛出越界的错误,所以这个方法没必要
* 检查index是否为负数.
*/
private void rangeCheck(int index) {
if (index >= size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
/**
* add和addAll方法检查index是否合法
*/
private void rangeCheckForAdd(int index) {
if (index > size || index < 0)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
/**
* 构造下标越界的错误提醒
*/
private String outOfBoundsMsg(int index) {
return "Index: "+index+", Size: "+size;
}
/**
* 从list中删除与集合c重复的元素
*
* @param c collection containing elements to be removed from this list
* @return {@code true} if this list changed as a result of the call
* @throws ClassCastException if the class of an element of this list
* is incompatible with the specified collection
* (<a href="Collection.html#optional-restrictions">optional</a>)
* @throws NullPointerException if this list contains a null element and the
* specified collection does not permit null elements
* (<a href="Collection.html#optional-restrictions">optional</a>),
* or if the specified collection is null
* @see Collection#contains(Object)
*/
public boolean removeAll(Collection<?> c) {
Objects.requireNonNull(c);
//批量删除
return batchRemove(c, false);
}
/**
* list中只保留与集合c相同的元素
*
* @param c collection containing elements to be retained in this list
* @return {@code true} if this list changed as a result of the call
* @throws ClassCastException if the class of an element of this list
* is incompatible with the specified collection
* (<a href="Collection.html#optional-restrictions">optional</a>)
* @throws NullPointerException if this list contains a null element and the
* specified collection does not permit null elements
* (<a href="Collection.html#optional-restrictions">optional</a>),
* or if the specified collection is null
* @see Collection#contains(Object)
*/
public boolean retainAll(Collection<?> c) {
Objects.requireNonNull(c);
return batchRemove(c, true);
}
/**
* list批量删除/保留与集合c相同的元素.complement: 删除为false,保留为true
*/
private boolean batchRemove(Collection<?> c, boolean complement) {
final Object[] elementData = this.elementData;
//r: 遍历元素最后一个元素的下标,w: 剩下元素最后一个元素的下标
int r = 0, w = 0;
//是否删除元素
boolean modified = false;
try {
for (; r < size; r++)
if (c.contains(elementData[r]) == complement)
//把要保留的元素按照顺序还放到list里,将原来的元素覆盖.
elementData[w++] = elementData[r];
} finally {
//原方法有可能会报错,这样r就没走到r.size
if (r != size) {
//将r到size-1的元素移到保留的元素的后面
System.arraycopy(elementData, r,
elementData, w,
size - r);
//w的下标增加r到size-1个元素
w += size - r;
}
if (w != size) {
// clear to let GC do its work
//将保留的元素的后面的元素的值置为null
for (int i = w; i < size; i++)
elementData[i] = null;
//修改的次数就是删除的元素个数
modCount += size - w;
size = w;
//w和size不相等,说明有元素被删除
modified = true;
}
}
return modified;
}
/**
* Save the state of the <tt>ArrayList</tt> instance to a stream (that
* is, serialize it).
*
* @serialData The length of the array backing the <tt>ArrayList</tt>
* instance is emitted (int), followed by all of its elements
* (each an <tt>Object</tt>) in the proper order.
*/
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException{
// Write out element count, and any hidden stuff
int expectedModCount = modCount;
s.defaultWriteObject();
// Write out size as capacity for behavioural compatibility with clone()
s.writeInt(size);
// Write out all elements in the proper order.
for (int i=0; i<size; i++) {
s.writeObject(elementData[i]);
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
}
/**
* Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
* deserialize it).
*/
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
elementData = EMPTY_ELEMENTDATA;
// Read in size, and any hidden stuff
s.defaultReadObject();
// Read in capacity
s.readInt(); * ignored
if (size > 0) {
// be like clone(), allocate array based upon size not capacity
ensureCapacityInternal(size);
Object[] a = elementData;
// Read in all elements in the proper order.
for (int i=0; i<size; i++) {
a[i] = s.readObject();
}
}
}
/**
* Returns a list iterator over the elements in this list (in proper
* sequence), starting at the specified position in the list.
* The specified index indicates the first element that would be
* returned by an initial call to {@link ListIterator#next next}.
* An initial call to {@link ListIterator#previous previous} would
* return the element with the specified index minus one.
*
* <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
*
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public ListIterator<E> listIterator(int index) {
if (index < 0 || index > size)
throw new IndexOutOfBoundsException("Index: "+index);
return new ListItr(index);
}
/**
* Returns a list iterator over the elements in this list (in proper
* sequence).
*
* <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
*
* @see #listIterator(int)
*/
public ListIterator<E> listIterator() {
return new ListItr(0);
}
/**
* Returns an iterator over the elements in this list in proper sequence.
*
* <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
*
* @return an iterator over the elements in this list in proper sequence
*/
public Iterator<E> iterator() {
return new Itr();
}
/**
* 内部类,优化版本的AbstractList.Itr,迭代器
* 迭代器的方法类似于链表,但实际实现还是以数组的方式来实现的
*/
private class Itr implements Iterator<E> {
//游标,指向下一个元素
int cursor; // index of next element to return
//最后一个返回的元素的下标
int lastRet = -1; // index of last element returned; -1 if no such
//期待的版本号: 如果跟list中的保持一致,说明中间没有被修改.
int expectedModCount = modCount;
//如果游标不等于index,那么有下一个元素
public boolean hasNext() {
return cursor != size;
}
@SuppressWarnings("unchecked")
public E next() {
//检查有没有其他线程修改list内容
checkForComodification();
int i = cursor;
if (i >= size)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length)
throw new ConcurrentModificationException();
//修改游标
cursor = i + 1;
//返回下一个元素.修改最后返回元素的下标
return (E) elementData[lastRet = i];
}
public void remove() {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification();
try {
//删除当前元素
ArrayList.this.remove(lastRet);
//删除元素后游标指向上一个元素
cursor = lastRet;
//最后修改元素设为初始值
lastRet = -1;
//将期望版本号改为同list的版本号保持一致
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
@Override
@SuppressWarnings("unchecked")
//消费剩下的元素
public void forEachRemaining(Consumer<? super E> consumer) {
Objects.requireNonNull(consumer);
final int size = ArrayList.this.size;
int i = cursor;
if (i >= size) {
return;
}
final Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length) {
throw new ConcurrentModificationException();
}
//遍历消费从i开始的元素
while (i != size && modCount == expectedModCount) {
consumer.accept((E) elementData[i++]);
}
// update once at end of iteration to reduce heap write traffic
cursor = i;
lastRet = i - 1;
checkForComodification();
}
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}
/**
* 优化版本的AbstractList.ListItr
*/
private class ListItr extends Itr implements ListIterator<E> {
ListItr(int index) {
super();
cursor = index;
}
public boolean hasPrevious() {
return cursor != 0;
}
public int nextIndex() {
return cursor;
}
public int previousIndex() {
return cursor - 1;
}
@SuppressWarnings("unchecked")
public E previous() {
checkForComodification();
int i = cursor - 1;
if (i < 0)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i;
return (E) elementData[lastRet = i];
}
public void set(E e) {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification();
try {
ArrayList.this.set(lastRet, e);
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
public void add(E e) {
checkForComodification();
try {
int i = cursor;
ArrayList.this.add(i, e);
cursor = i + 1;
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
}
/**
* 返回一个list,从原list的fromIndex(包含),到原list的toIndex(不包含).
* 对新的list的修改会反映在原list上.
*
* @throws IndexOutOfBoundsException {@inheritDoc}
* @throws IllegalArgumentException {@inheritDoc}
*/
public List<E> subList(int fromIndex, int toIndex) {
subListRangeCheck(fromIndex, toIndex, size);
return new SubList(this, 0, fromIndex, toIndex);
}
//参数检查
static void subListRangeCheck(int fromIndex, int toIndex, int size) {
if (fromIndex < 0)
throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
if (toIndex > size)
throw new IndexOutOfBoundsException("toIndex = " + toIndex);
if (fromIndex > toIndex)
throw new IllegalArgumentException("fromIndex(" + fromIndex +
") > toIndex(" + toIndex + ")");
}
private class SubList extends AbstractList<E> implements RandomAccess {
private final AbstractList<E> parent;
private final int parentOffset;
private final int offset;
int size;
SubList(AbstractList<E> parent,
int offset, int fromIndex, int toIndex) {
//原list
this.parent = parent;
//子list与原list的偏移量就是fromIndex
this.parentOffset = fromIndex;
//子list的偏移量(即子list的游标)是原list的偏移量+fromIndex
this.offset = offset + fromIndex;
//子list的长度是toIndex - fromIndex
this.size = toIndex - fromIndex;
//子list版本号与原list版本号一直
this.modCount = ArrayList.this.modCount;
}
public E set(int index, E e) {
//检查index合法性
rangeCheck(index);
//检查版本号是否一致,看看操作期间是否被修改
checkForComodification();
E oldValue = ArrayList.this.elementData(offset + index);
//设置值
ArrayList.this.elementData[offset + index] = e;
return oldValue;
}
//取值
public E get(int index) {
rangeCheck(index);
checkForComodification();
return ArrayList.this.elementData(offset + index);
}
//长度
public int size() {
checkForComodification();
return this.size;
}
//调用原list方法添加元素
public void add(int index, E e) {
rangeCheckForAdd(index);
checkForComodification();
parent.add(parentOffset + index, e);
this.modCount = parent.modCount;
this.size++;
}
public E remove(int index) {
rangeCheck(index);
checkForComodification();
E result = parent.remove(parentOffset + index);
this.modCount = parent.modCount;
this.size--;
return result;
}
protected void removeRange(int fromIndex, int toIndex) {
checkForComodification();
parent.removeRange(parentOffset + fromIndex,
parentOffset + toIndex);
this.modCount = parent.modCount;
this.size -= toIndex - fromIndex;
}
public boolean addAll(Collection<? extends E> c) {
return addAll(this.size, c);
}
public boolean addAll(int index, Collection<? extends E> c) {
rangeCheckForAdd(index);
int cSize = c.size();
if (cSize==0)
return false;
checkForComodification();
parent.addAll(parentOffset + index, c);
this.modCount = parent.modCount;
this.size += cSize;
return true;
}
public Iterator<E> iterator() {
return listIterator();
}
public ListIterator<E> listIterator(final int index) {
checkForComodification();
rangeCheckForAdd(index);
final int offset = this.offset;
return new ListIterator<E>() {
int cursor = index;
int lastRet = -1;
int expectedModCount = ArrayList.this.modCount;
public boolean hasNext() {
return cursor != SubList.this.size;
}
@SuppressWarnings("unchecked")
public E next() {
checkForComodification();
int i = cursor;
if (i >= SubList.this.size)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (offset + i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i + 1;
return (E) elementData[offset + (lastRet = i)];
}
public boolean hasPrevious() {
return cursor != 0;
}
@SuppressWarnings("unchecked")
public E previous() {
checkForComodification();
int i = cursor - 1;
if (i < 0)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (offset + i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i;
return (E) elementData[offset + (lastRet = i)];
}
@SuppressWarnings("unchecked")
public void forEachRemaining(Consumer<? super E> consumer) {
Objects.requireNonNull(consumer);
final int size = SubList.this.size;
int i = cursor;
if (i >= size) {
return;
}
final Object[] elementData = ArrayList.this.elementData;
if (offset + i >= elementData.length) {
throw new ConcurrentModificationException();
}
while (i != size && modCount == expectedModCount) {
consumer.accept((E) elementData[offset + (i++)]);
}
* update once at end of iteration to reduce heap write traffic
lastRet = cursor = i;
checkForComodification();
}
public int nextIndex() {
return cursor;
}
public int previousIndex() {
return cursor - 1;
}
public void remove() {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification();
try {
SubList.this.remove(lastRet);
cursor = lastRet;
lastRet = -1;
expectedModCount = ArrayList.this.modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
public void set(E e) {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification();
try {
ArrayList.this.set(offset + lastRet, e);
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
public void add(E e) {
checkForComodification();
try {
int i = cursor;
SubList.this.add(i, e);
cursor = i + 1;
lastRet = -1;
expectedModCount = ArrayList.this.modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
final void checkForComodification() {
if (expectedModCount != ArrayList.this.modCount)
throw new ConcurrentModificationException();
}
};
}
public List<E> subList(int fromIndex, int toIndex) {
subListRangeCheck(fromIndex, toIndex, size);
return new SubList(this, offset, fromIndex, toIndex);
}
private void rangeCheck(int index) {
if (index < 0 || index >= this.size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
private void rangeCheckForAdd(int index) {
if (index < 0 || index > this.size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
private String outOfBoundsMsg(int index) {
return "Index: "+index+", Size: "+this.size;
}
private void checkForComodification() {
if (ArrayList.this.modCount != this.modCount)
throw new ConcurrentModificationException();
}
public Spliterator<E> spliterator() {
checkForComodification();
return new ArrayListSpliterator<E>(ArrayList.this, offset,
offset + this.size, this.modCount);
}
}
@Override
public void forEach(Consumer<? super E> action) {
Objects.requireNonNull(action);
final int expectedModCount = modCount;
@SuppressWarnings("unchecked")
final E[] elementData = (E[]) this.elementData;
final int size = this.size;
//遍历消费元素
for (int i=0; modCount == expectedModCount && i < size; i++) {
action.accept(elementData[i]);
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
}
/**
* Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
* and <em>fail-fast</em> {@link Spliterator} over the elements in this
* list.
*
* <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
* {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
* Overriding implementations should document the reporting of additional
* characteristic values.
*
* @return a {@code Spliterator} over the elements in this list
* @since 1.8
*/
@Override
public Spliterator<E> spliterator() {
return new ArrayListSpliterator<>(this, 0, -1, 0);
}
/** Index-based split-by-two, lazily initialized Spliterator */
static final class ArrayListSpliterator<E> implements Spliterator<E> {
/*
* If ArrayLists were immutable, or structurally immutable (no
* adds, removes, etc), we could implement their spliterators
* with Arrays.spliterator. Instead we detect as much
* interference during traversal as practical without
* sacrificing much performance. We rely primarily on
* modCounts. These are not guaranteed to detect concurrency
* violations, and are sometimes overly conservative about
* within-thread interference, but detect enough problems to
* be worthwhile in practice. To carry this out, we (1) lazily
* initialize fence and expectedModCount until the latest
* point that we need to commit to the state we are checking
* against; thus improving precision. (This doesn't apply to
* SubLists, that create spliterators with current non-lazy
* values). (2) We perform only a single
* ConcurrentModificationException check at the end of forEach
* (the most performance-sensitive method). When using forEach
* (as opposed to iterators), we can normally only detect
* interference after actions, not before. Further
* CME-triggering checks apply to all other possible
* violations of assumptions for example null or too-small
* elementData array given its size(), that could only have
* occurred due to interference. This allows the inner loop
* of forEach to run without any further checks, and
* simplifies lambda-resolution. While this does entail a
* number of checks, note that in the common case of
* list.stream().forEach(a), no checks or other computation
* occur anywhere other than inside forEach itself. The other
* less-often-used methods cannot take advantage of most of
* these streamlinings.
*/
private final ArrayList<E> list;
//下标: 默认为0
private int index; // current index, modified on advance/split
//分割次数,默认-1
private int fence; // -1 until used; then one past last index
//期望版本号: 默认0
private int expectedModCount; // initialized when fence set
/** Create new spliterator covering the given range */
ArrayListSpliterator(ArrayList<E> list, int origin, int fence,
int expectedModCount) {
this.list = list; * OK if null unless traversed
this.index = origin;
this.fence = fence;
this.expectedModCount = expectedModCount;
}
//当fence为获取分割次数
private int getFence() { // initialize fence to size on first use
//每一个分割里的终止位置的下标
int hi; // (a specialized variant appears in method forEach)
ArrayList<E> lst;
//此处会给hi赋值为fence.
if ((hi = fence) < 0) {
if ((lst = list) == null)
hi = fence = 0;
else {
expectedModCount = lst.modCount;
//分割次数是元素的个数
hi = fence = lst.size;
}
}
return hi;
}
public ArrayListSpliterator<E> trySplit() {
//获取分割次数,lo为起始下标,mid为起始下标+终止下标/2
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
return (lo >= mid) ? null : // divide range in half unless too small
new ArrayListSpliterator<E>(list, lo, index = mid,
expectedModCount);
}
public boolean tryAdvance(Consumer<? super E> action) {
if (action == null)
throw new NullPointerException();
int hi = getFence(), i = index;
if (i < hi) {
index = i + 1;
@SuppressWarnings("unchecked") E e = (E)list.elementData[i];
action.accept(e);
if (list.modCount != expectedModCount)
throw new ConcurrentModificationException();
return true;
}
return false;
}
public void forEachRemaining(Consumer<? super E> action) {
int i, hi, mc; * hoist accesses and checks from loop
ArrayList<E> lst; Object[] a;
if (action == null)
throw new NullPointerException();
if ((lst = list) != null && (a = lst.elementData) != null) {
if ((hi = fence) < 0) {
mc = lst.modCount;
hi = lst.size;
}
else
mc = expectedModCount;
if ((i = index) >= 0 && (index = hi) <= a.length) {
for (; i < hi; ++i) {
@SuppressWarnings("unchecked") E e = (E) a[i];
action.accept(e);
}
if (lst.modCount == mc)
return;
}
}
throw new ConcurrentModificationException();
}
public long estimateSize() {
return (long) (getFence() - index);
}
public int characteristics() {
return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
}
}
@Override
public boolean removeIf(Predicate<? super E> filter) {
Objects.requireNonNull(filter);
// figure out which elements are to be removed
// any exception thrown from the filter predicate at this stage
// will leave the collection unmodified
//删除的元素数量
int removeCount = 0;
//BitSet是一个用来表示各个数值是否存在的类.
//它将多个数值放在一个long[]中,long[]中的每一个值只能是0或者1.
//0表示该index的数不存在,1表示该index的数存在.
//例如三个数1,6,7存在long[]中,因为一个long值长度为64bit,因此,只需一个long值即可存
//存起来的结果是: [000...76000010],第1位,6位,7位的值置为1
final BitSet removeSet = new BitSet(size);
//期望修改次数
final int expectedModCount = modCount;
final int size = this.size;
//遍历所有元素
for (int i=0; modCount == expectedModCount && i < size; i++) {
@SuppressWarnings("unchecked")
final E element = (E) elementData[i];
//如果该元素符合过滤条件
if (filter.test(element)) {
//BitSet中标记
removeSet.set(i);
删除元素数量+1
removeCount++;
}
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
// shift surviving elements left over the spaces left by removed elements
final boolean anyToRemove = removeCount > 0;
if (anyToRemove) {
final int newSize = size - removeCount;
//遍历所有元素
for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) {
//i为下一个未删除的元素
i = removeSet.nextClearBit(i);
//将未删除的元素集中挪到数组的前面
elementData[j] = elementData[i];
}
//遍历未被删除的元素后面的所有元素,将所有元素置为null,等待回收
for (int k=newSize; k < size; k++) {
elementData[k] = null; // Let gc do its work
}
//设置list中元素数量
this.size = newSize;
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
modCount++;
}
//返回是否有元素被删除
return anyToRemove;
}
@Override
@SuppressWarnings("unchecked")
public void replaceAll(UnaryOperator<E> operator) {
Objects.requireNonNull(operator);
final int expectedModCount = modCount;
final int size = this.size;
for (int i=0; modCount == expectedModCount && i < size; i++) {
elementData[i] = operator.apply((E) elementData[i]);
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
modCount++;
}
@Override
@SuppressWarnings("unchecked")
public void sort(Comparator<? super E> c) {
final int expectedModCount = modCount;
//调用Arrays.sort方法来对list进行排序
Arrays.sort((E[]) elementData, 0, size, c);
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
modCount++;
}
}
Copy the code