Heap sort
Idea: it is essentially a complete binary tree, which must meet the following requirements: the keyword of any non-leaf node in the tree is not greater than (or less than) the keyword of its left and right children (if any).
Swap the first and last elements each time, output the last element (the maximum), and resize the remaining elements to the large root heap. When the last element is printed, the array is sorted from smallest to largest.
// 2) Heap sort: Swap the top element of the heap with the last element of the array that has not been replaced. Reference code: / / http://bubkoo.com/2014/01/14/sort-algorithm/heap-sort/ function sort8 (array) {var result = array. Slice (0); function swap(array, i, j) { var temp = array[i]; array[i] = array[j]; array[j] = temp; } function maxHeapify(array, index, heapSize) { var iMax, iLeft, iRight; while (true) { iMax = index; iLeft = 2 * index + 1; iRight = 2 * (index + 1); if (iLeft < heapSize && array[index] < array[iLeft]) { iMax = iLeft; } if (iRight < heapSize && array[iMax] < array[iRight]) { iMax = iRight; } if (iMax ! = index) { swap(array, iMax, index); index = iMax; } else { break; } } } function buildMaxHeap(array) { var i, iParent = Math.floor(array.length / 2) - 1; for (i = iParent; i >= 0; i--) { maxHeapify(array, i, array.length); } } function sort(array) { buildMaxHeap(array); for (var i = array.length - 1; i > 0; i--) { swap(array, 0, i); maxHeapify(array, 0, i); } return array; } return sort(result); }Copy the code
Selection Sort — Heapsort Algorithm (Javascript)
* Save the heap root in the tail, and call the adjustment function on the rest of the sequence, and then save the maximum tail in the tail -1 (-1, -2,... , -i), * Then adjust the remaining sequence and repeat the process until the sequence is completed. Function AdjustHeap(arr, pos, len){var swap = arr[pos]; Var child = pos * 2 + 1; While (child < len){// Check whether the current node has a right node, if the right node is large, If (child + 1 < len && arr[child] < arr[child + 1]){child += 1; If (arr[pos] < arr[child]){arr[pos] = arr[child]; if(arr[pos] = arr[child]; pos = child; child = pos * 2 + 1; } else{ break; } arr[pos] = swap; }} /* Build heap: * Satisfy that the keyword of any non-leaf node in the tree is not greater than (or less than) the keyword of its left and right child nodes. * Implementation: starting from the last node with child nodes, compare this node with other nodes, swap the largest number to this node, * after the switch, the same switching process is followed by the previous node, until the big top heap is built. */ function BuildHeap(arr){ for(var i=arr.length/2; i>=0; I --){// Build the top heap AdjustHeap(arr, I, arr.length); }} /* HeapSort */ function HeapSort(arr){BuildHeap(arr); Var I =arr. Length -1; i>0; Var swap = arr[I]; var swap = arr[I]; Arr [I] = arr[0]; arr[I] = arr[0]; arr[0] = swap; AdjustHeap(arr, 0, i); }} var arr = [46,12,33,72,68,19,80,33]; console.log('before: ' + arr); HeapSort(arr); console.log(' after: ' + arr); -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- - the author: Cynthia (XiaoYingZi) source: CSDN, https://blog.csdn.net/ganyingxie123456/article/details/69053478 copyright statement: This article is the blogger's original article, reprint please attach the blog link!Copy the code
reference
- wiki
- Sort diagram: JS sort algorithm implementation
- Selection Sort — Heapsort Algorithm (Javascript)