A list,
1. Gaussian plume model equation
Where C is pollutant concentration (unit: kg/m3)
Q is source strength (unit: kg/s)
U is the average wind speed at the leakage height (unit: m/s)
The diffusion parameters on y axis and z axis expressed by concentration standard deviation respectively
H is the effective height of leakage (unit: m)
2 diffusion coefficient coefficient
Ii. Source code
function varargout = mGA_new(varargin)
% MGA_NEW MATLAB code for mGA_new.fig
% MGA_NEW, by itself, creates a new MGA_NEW or raises the existing
% singleton*.
%
% H = MGA_NEW returns the handle to a new MGA_NEW or the handle to
% the existing singleton*.
%
% MGA_NEW('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in MGA_NEW.M with the given input arguments.
%
% MGA_NEW('Property','Value',...) creates a new MGA_NEW or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before mGA_new_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to mGA_new_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help mGA_new
% Last Modified by GUIDE v2.5 04-Jul-2020 16:21:23
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @mGA_new_OpeningFcn, ...
'gui_OutputFcn', @mGA_new_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before mGA_new is made visible.
function mGA_new_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to mGA_new (see VARARGIN)
% Choose default command line output for mGA_new
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes mGA_new wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = mGA_new_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on selection change in popupmenu1.
function popupmenu1_Callback(hObject, eventdata, handles)
% hObject handle to popupmenu1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = cellstr(get(hObject,'String')) returns popupmenu1 contents as cell array
% contents{get(hObject,'Value')} returns selected item from popupmenu1
% --- Executes during object creation, after setting all properties.
function popupmenu1_CreateFcn(hObject, eventdata, handles)
% hObject handle to popupmenu1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function feng_Callback(hObject, eventdata, handles)
% hObject handle to feng (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of feng as text
% str2double(get(hObject,'String')) returns contents of feng as a double
% --- Executes during object creation, after setting all properties.
function feng_CreateFcn(hObject, eventdata, handles)
% hObject handle to feng (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function gaodu_Callback(hObject, eventdata, handles)
% hObject handle to gaodu (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of gaodu as text
% str2double(get(hObject,'String')) returns contents of gaodu as a double
% --- Executes during object creation, after setting all properties.
function gaodu_CreateFcn(hObject, eventdata, handles)
% hObject handle to gaodu (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in jiancedian.
function jiancedian_Callback(hObject, eventdata, handles)
% hObject handle to jiancedian (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
[filename,pathname]=uigetfile({'*xls;*.xlsx'},'读入测量数据文件');%加载路径的选择
fpath=[pathname,filename];%总的路径
data=xlsread(fpath);%读测量文件
set(handles.guance,'data',data);%写入到表中
setappdata(handles.jiancedian,'data',data);
% --- Executes on button press in fansuan.
function fansuan_Callback(hObject, eventdata, handles)
% hObject handle to fansuan (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
%% 获取参数
% diedai=str2double(get(handles.deidai,'String'));% 进化次数
val=get(handles.popupmenu1,'value'); %这是获取当前选项的位置,从上到下是1,2,3...
str=get(handles.popupmenu1,'string');
W=str{val}; %这个将返回当前选项的内容,若是纯数字用str2num(str(val))
popsize=100; %种群规模
lenchrom=3;%变量字串长度
maxgen=str2double(get(handles.diedai,'String'));% 进化次数
% maxgen=1000;% 进化次数
popmax=500;% 种群最大值
popmin=-500;% 种群最小值
u1=str2double(get(handles.feng,'String'));
hr=str2double(get(handles.gaodu,'String'));
% % z1=str2double(get(handles.edit3,'String'));
% z1=0;
% Q=str2double(get(handles.edit8,'String'));
dt=getappdata(handles.jiancedian,'data');
d=dt(:,:);
% mGA.data(:,1)=dt(:,2);
% mGA.data(:,2)=dt(:,3);
% % z1=dt(:,3);
% % set(handles.uitable2,'data',data);
%% 开始
bound=[0 20000;popmin popmax;popmin popmax]; %变量范围
for i=1:popsize
%随机产生一个种群
GApop(i,:)=Code(lenchrom,bound); %随机产生个体
% GApop(i,:)=mGA.data(i,:);
%计算适应度
fitvalue(i)=fitness(GApop(i,:),u1,hr,d,W); %染色体的适应度
end
% set(handles.uitable2,'data',fitvalue);
%% 找最好的染色体
[bestfitness,bestindex]=min(fitvalue);
xm=GApop(bestindex,:); %全局最佳
gbest=GApop; %体最佳
fitnessgbest=fitvalue; %个体最佳适应度值
xv=bestfitness; %全局最佳适应度值
% % set(handles.uitable2,'data',xv);
%% 迭代寻优
for i=1:maxgen
%种群更新 GA选择更新
GApop=Select(GApop,fitvalue,popsize); % 其中Select为选择算子函数
% 交叉操作 GA
pc=i/maxgen; % maxgen 进化次数
GApop=Cross(pc,lenchrom,GApop,popsize,bound); % 其中Cross为交叉算子函数
% 变异操作 GA变异
pm=i/maxgen;
GApop=Mutation(pm,lenchrom,GApop,popsize,[i maxgen],bound);
pop=GApop;
for j=1:popsize
%适应度值即变量约束条件
if 1*pop(j,1)+0*pop(j,2)+0*pop(j,3)<=20000 && 1*pop(j,1)+0*pop(j,2)+0*pop(j,3)>=0
if 0*pop(j,1)+1*pop(j,2)+0*pop(j,3)<=500 && 0*pop(j,1)+1*pop(j,2)+0*pop(j,3)>=-500
if 0*pop(j,1)+0*pop(j,2)+1*pop(j,3)<=500 && 0*pop(j,1)+0*pop(j,2)+1*pop(j,3)>=-500
fitvalue(j)=fitness(pop(j,:),u1,hr,d,W);
end
end
end
%个体最优更新
if fitvalue(j) < fitnessgbest(j)
gbest(j,:) = pop(j,:);
fitnessgbest(j) = fitvalue(j);
end
%群体最优更新
if fitvalue(j) < xv
xm = pop(j,:);
xv = fitvalue(j);
end
end
QQ(i)=xm(:,1);
x(i)=xm(:,2);
y(i)=xm(:,3);
v(i)=xv;
end
Copy the code
3. Operation results
Fourth, note
The code download www.cnblogs.com/ttmatlab/p/…