This is the 17th day of my participation in the November Gwen Challenge. Check out the event details: The last Gwen Challenge 2021
NumPy- Get started quickly
Array creation
NumPy is characterized by its N-dimensional array object NDARray.
Ndarray is a collection of data of the same type.
The ndarray object is used to hold multi-dimensional arrays of elements of the same type.
import numpy as np
a=np.array([1.2.3])
print(a)
print(type(a))
Copy the code
Creating an interval array
The arange argument (initial value, end value, step size) does not contain an end value
import numpy as np
a=np.arange(1.10.3)
print(a)
b=np.arange(1.10.0.5)
print(b)
Copy the code
Creating a two-dimensional array
Ndim dimension
Shape Number of rows and columns
Number of size elements
import numpy as np
arr=np.array([[1.2], [4.5], [7.8]])
print(arr)
print(arr.ndim)
print(arr.shape)
print(arr.size)
Copy the code
Specify the length of each dimension
Ones live 1 array
import numpy as np
arr=np.ones(shape=(3.4.5))
print(arr)
Copy the code
An array of attributes
Common attributes for array objects are: nDIM, Shape, DType, size, and ItemSize.
Ndim is used to return the dimension of the array
Shape returns the shape of an array
Dtype is used to return the data type of the array
Size is used to return the number of elements in the array
Itemsize returns the size, in bytes, of each element in the array.
import numpy as np
arr=np.array([[1.2], [3.6]])
print(arr.ndim)
print(arr.shape)
print(arr.dtype)
print(arr.size)
print(arr.itemsize)
Copy the code
The data type
When creating an array, you can use dtype to specify the types of the elements in the array.
If no element type is specified, inferences are made based on the element type.
If the type of the element is different, a compatible type is selected.
import numpy as np
a=np.array([1.5.9.0],dtype=np.float32)
b=np.array([1.'a'.2])
print(a.dtype)
print(b.dtype)
Copy the code
Astype () performs type conversion
import numpy as np
a=np.array([1.5.9],dtype=np.string_)
print(a)
a=a.astype(np.uint)
print(a)
print(a.dtype)
Copy the code
The 0 0 method changes the shape of the array.
import numpy as np
a=np.arange(15)
print(a)
b=np.reshape(a,(3.5))
print(b)
Copy the code
Set the multidimensional
Dimension-1 indicates that the size of the dimension is automatically calculated
import numpy as np
a=np.arange(20)
print(a)
b=np.reshape(a,(-1.2.5))
print(b)
Copy the code
Index and slice
Select multiple elements
import numpy as np
a=np.arange(20)
print(a)
print(a[0],a[10])
a=a.reshape((4.5))
print(a)
print(a[2.0])
Copy the code
Slicing returns a view of the original array object
import numpy as np
a=np.arange(20)
b=a[0:5]
a[2] =33
print(a)
print(b)
Copy the code
Copy () returns a copy of the array if you want it to be true
import numpy as np
a=np.arange(20)
print(a)
b=a.copy()
b=b[0:5]
a[2] =33
print(a)
print(b)
Copy the code
Condition index
import numpy as np
a=np.arange(20)
print(a)
b=a[a%2= =0]
print(b)
Copy the code
Array flattening
Ravel () returns a view of the original array
Flatten () returns a copy of the original array
import numpy as np
a=np.arange(15).reshape(3.5)
b=a.ravel()
c=a.flatten()
a[0.0] =1
print(a)
print(b)
print(c)
Copy the code
Store order
The order argument specifies the order in which the array elements are stored
import numpy as np
a=np.array([[1.2.3], [4.5.6]])
b=a.reshape((3.2),order="C")
c=a.reshape((3.2),order="F")
print(a)
print(b)
print(c)
Copy the code
function
statistical
When the array is a two-dimensional array, axis=0 is counted vertically and axis=1 is counted horizontally
import numpy as np
a=np.array([[1.2.3], [4.5.6]])
print(np.sum(a,axis=0))
print(np.sum(a,axis=1))
Copy the code
The commonly used statistical functions are as follows:
① Mean ()/sum()/median(). Mean/sum/median
② Max ()/min()/amax()/amin(). Maximum/minimum/maximum/minimum value
③argmax()/argmin()/ STD ()/var(). Maximum index/minimum index/standard deviation/variance
(4) cumsum (a)/cumprod (). Add up
random
Common random functions are:
(1) np. Random. Rand ()
(2) np. Random. The random ()
(3) np. Random. Randn ()
④ Probability density function of NP.random. Normal () gaussian distribution
⑤ Np.random.randint () the number of random integers
⑥ Np.random. Seed () Random number seed
⑦ NP. Random. Shuffle (
⑧ NP. Random. Uniform () random sampling
import numpy as np
a=np.random.rand(2.2)
b=np.random.random(size=(2.2))
c=np.random.randn(2.2)
print(a)
print(b)
print(c)
Copy the code
The connection
Concatenate () concatenates arrays along the specified axis
import numpy as np
a=np.arange(6).reshape((2.3))
b=np.arange(6).reshape((2.3))
print(a)
print(b)
print(np.concatenate((a,b),axis=0))
print(np.concatenate((a,b),axis=1))
Copy the code
other
Any () : Returns True if any element in the array is True (or can be converted to True), False otherwise.
All () : Returns True if all elements in the array are True (or can be converted to True), False otherwise.
Transpose (T) functions default to matrix transpose when no arguments are specified.
Specify the parameter transpose ((0,1)) to change the sequence according to the original coordinate axis, i.e.
Transpose ((1, 0)) means to swap axis 0 and 1.
import numpy as np
a=np.arange(6).reshape((3.2))
print(a)
print(a.transpose())
Copy the code