Data Structure Chen Yue – Chinese University MOOC
1.1 What is a data structure
1.2 What is an algorithm
1.3 Application Example: Maximum subcolumn and problems
Given a sequence of N integers {A_1, A_2… , A_N}, find the sum of the largest subcolumns, that is, the maximum value of the following function:
Algorithm 1: Violence solution T(N)=O(N^3)
Algorithm 2: Brute force solution, simplifying T(N)=O(N^2)
Algorithm 3: Divide and conquer T(N)=O(Nlog(N))
The subcolumn has only three possibilities: ① on the left, ② on the right, and ③ across the middle.
Let’s say I have a function that can find the sum of the largest subcolumns of length K.
So, you can continue to divide it into smaller units, using the recursive idea.
So, for example, when I do ①, I get the largest sum of the subcolumns of length K over 2, and I call myself.
Termination condition for recursion: The subcolumn has only one element.
Recursive chain:
On the left, on the right, it’s easier.
The ones that cross the middle are more troublesome. You need to scan both sides.
/ / -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- method 3 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- - / /
int Max3( int A, int B, int C )
{ /* Returns the maximum of three integers */
//return A > B ? A > C ? A : C : B > C ? B : C;
return ( A > B ? (A > C ? A : C ) : (B > C ? B : C) ); // Add parentheses to make sense
}
int DivideAndConquer( int List[], int left, int right )
{ /* Divide and conquer the largest subcolumn from List[left] to List[right] and */
int MaxLeftSum, MaxRightSum; /* Store the solutions of the left and right subproblems */
int MaxLeftBorderSum, MaxRightBorderSum; /* Store results across boundaries */
int LeftBorderSum, RightBorderSum;
int center, i;
if( left == right ) { /* Recursive terminating condition, subcolumn only 1 digit */
if( List[left] > 0 ) return List[left];
else return 0;
}
/* The following is the process of "dividing" */
/* Find the halfway point */
center = ( left + right ) / 2;
/* Recursively find the maximum sum of the subcolumns */ on both sides
MaxLeftSum = DivideAndConquer( List, left, center );
MaxRightSum = DivideAndConquer( List, center+1, right );
/* Find the largest subcolumn across the dividing line and */
MaxLeftBorderSum = 0; LeftBorderSum = 0;
for( i=center; i>=left; i-- ) { /* Scan left from center */
LeftBorderSum += List[i];
if( LeftBorderSum > MaxLeftBorderSum )
MaxLeftBorderSum = LeftBorderSum;
} /* Left end of scan */
MaxRightBorderSum = 0; RightBorderSum = 0;
for( i=center+1; i<=right; i++ ) { /* Scan right from the center line */
RightBorderSum += List[i];
if( RightBorderSum > MaxRightBorderSum )
MaxRightBorderSum = RightBorderSum;
} /* Right end of scan */
/* Return the result of "treat" */
return Max3( MaxLeftSum, MaxRightSum, MaxLeftBorderSum + MaxRightBorderSum );
}
int MaxSubseqSum3( int List[], int N )
{ /* Keep the same function interface as the first two algorithms */
return DivideAndConquer( List, 0, N- 1 );
}
Copy the code
Algorithm 4: T(N)=O(N)
Enhanced version: Returns the number corresponding to the start and end of the largest subcolumn and handles special cases
01- Maximum Subsequence Sum (25分)
#include<stdio.h>
/ / -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- methods added 4 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- / /
int MaxStart = 0; // The starting point of the largest subcolumn sum
int MaxEnd = 0; // End of the largest subcolumn sum
int flag = - 1; //-1 indicates all negative numbers, 0 indicates a positive number, and positive number indicates the position where 0 is first encountered in the case of only negative numbers and 0
int MaxSubseqSum4p( int A[], int N )
{
int ThisSum = 0, MaxSum = 0;
int ThisStart = 0; // The starting point of the current subcolumn
int i;
for( i = 0; i < N; i++ ) {
if(A[i] > 0)
flag = 0; // In normal case, there is a positive number
else if (A[i] == 0 && flag < 0)
{
ThisStart = i+1;
flag = i; // Only negative numbers, 0, record the position of 0 for the first time
}
ThisSum += A[i]; /* sums to the right */
if( ThisSum > MaxSum )
{
MaxSum = ThisSum; /* If a larger sum is found, update the current result */
MaxStart = ThisStart;
MaxEnd = i;
}
else if( ThisSum < 0 ) /* If the sum of the current subcolumns is negative */
{
ThisSum = 0; /* it is not possible to increase the following part of the sum, discard the */
// But ThisSum == 0 cannot be discarded directly. Because if I say 1 minus 1, 2 minus 2, the largest subcolumn that I can figure out is 1 minus 1, 2
ThisStart = i+1; }}return MaxSum;
}
/ / -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- the main function -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- - / /
int main(a)
{
int K = 0, i = 0;
//printf(" please enter a positive integer K = ");
scanf("%d", &K);
//printf(" Please enter K numbers separated by Spaces: ");
int a[K];
for(i=0; i<K; i++){
scanf("%d", &a[i]);
}
printf("%d ", MaxSubseqSum4p(a, K));
if(flag == 0) // In normal case, there is a positive number
printf("%d %d", a[MaxStart], a[MaxEnd]); // Return the number corresponding to the starting point and the end point
else if(flag == - 1) // All negative numbers
printf("%d %d", a[0], a[K- 1]);
else // Only negative numbers, 0
printf("%d %d", a[flag], a[flag]);
}
Copy the code
All kinds of special situations, that’s exercise… Ha, ha, ha