Druid nested groupBy for precise recalculation
Sample SQL
(SELECT channel,isMinor,isNew FROM wikipedia GROUP BY channel,isMinor,isNew)
GROUP BY channel,isMinor
Copy the code
The corresponding json
{
"queryType": "groupBy"."dataSource": {
"type": "query"."query": {
"queryType": "groupBy"."dataSource": {
"type": "table"."name": "wikipedia"
},
"intervals": {
"type": "intervals"."intervals": [
"- the 146136543-09-08 t08: did. 096 z / 146140482-04-24 t15:36:27. 903 z"]},"virtualColumns": []."filter": null."granularity": {
"type": "all"
},
"dimensions": [{"type": "default"."dimension": "channel"."outputName": "d0"."outputType": "STRING"
},
{
"type": "default"."dimension": "isMinor"."outputName": "d1"."outputType": "STRING"
},
{
"type": "default"."dimension": "isNew"."outputName": "d2"."outputType": "STRING"}]."aggregations": []."having": null."limitSpec": {
"type": "default"."columns": []."limit": 100
},
"descending": false}},"intervals": {
"type": "intervals"."intervals": [
"- the 146136543-09-08 t08: did. 096 z / 146140482-04-24 t15:36:27. 903 z"]},"virtualColumns": []."filter": null."granularity": {
"type": "all"
},
"dimensions": [{"type": "default"."dimension": "d0"."outputName": "d0"."outputType": "STRING"
},
{
"type": "default"."dimension": "d1"."outputName": "d1"."outputType": "STRING"}]."aggregations": [{"type": "count"."name": "count"}]."having": null."limitSpec": {
"type": "default"."columns": []."limit": 100
},
"descending": false
}
Copy the code