preface
Hello! Friend!!!
Thank you very much for reading haihong’s article, if there are any mistakes in the article, please point out ~
Self-introduction ଘ(੭, ᵕ)੭
Nickname: Haihong
Tag: programmer monkey | C++ contestant | student
Introduction: because of C language to get acquainted with programming, then transferred to the computer major, had the honor to get some national awards, provincial awards… Has been confirmed. Currently learning C++/Linux/Python
Learning experience: solid foundation + more notes + more code + more thinking + learn English well!
Machine learning little White stage
The article is only used as my own study notes for the establishment of knowledge system and review
Know what is, know why!
Warm prompt
Because of compiler compatibility
Some latex grammatical mathematical formulas are displayed incorrectly or incorrectly
Linear Algebra for Machine Learning (3) : Properties of determinants
1.5 Properties of the determinant
Transpose determinant
The determinants of order N D: D= epsilon a11a12… a1na21a22… a2n…… an1an2… Ann ∣D=\begin{vmatrix} a_{11} &a_ {12} &… & a_{1n}\\ a_{21} & a_{22} & … &a_{2n}\\ . & . & & . \\ . & . & & . \\ a_{n1} & a_{n2} &… & a_ {nn} {vmatrix} D = \ \ \ end ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ a11a21. J. an1a12a22.. an2……… a1na2n.. Ann ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
Aij =ajia_{ij}=a_{ji}aij=aji DT=∣a11a21… an1a12a22… an2…… a1na2n… Ann ∣D^T=\begin{vmatrix} a_{11} &a_ {21} &… & a_{n1}\\ a_{12} & a_{22} & … &a_{n2}\\ . & . & & . \\ . & . & & . \\ a_{1n} & a_{2n} &… & a_ {nn} {vmatrix} \ \ \ end DT = ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ a11a12. J. a1na21a22.. a2n……… an1an2.. Ann ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
The determinant DTD^TDT is called the transpose determinant of the determinant DDD
The nature of the 1
content
The determinant is the same as its transpose determinant
prove
Set D = ∣ a11a12… a1na21a22… a2n…… an1an2… Ann ∣D=\begin{vmatrix} a_{11} &a_ {12} &… & a_{1n}\\ a_{21} & a_{22} & … &a_{2n}\\ . & . & & . \\ . & . & & . \\ a_{n1} & a_{n2} &… & a_ {nn} {vmatrix} D = \ \ \ end ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ a11a21. J. an1a12a22.. an2……… a1na2n.. Ann given given given given given given given given given DTDT is the transpose determinant of DDD
Again a DT = ∣ b11b12… b1nb21b22… b2n…… bn1bn2… BNN ∣D^T=\begin{vmatrix} b_{11} &b_ {12} &… & b_{1n}\\ b_{21} & b_{22} & … &b_{2n}\\ . & . & & . \\ . & . & & . \\ b_{n1} & b_{n2} &… & b_ {nn} {vmatrix} \ \ \ end DT = ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ b11b21. J. bn1b12b22.. bn2……… b1nb2n.. BNN ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
And because we know DT is equal to ∣a11a21 an1a12a22… an2…… a1na2n… Ann ∣D^T=\begin{vmatrix} a_{11} &a_ {21} &… & a_{n1}\\ a_{12} & a_{22} & … &a_{n2}\\ . & . & & . \\ . & . & & . \\ a_{1n} & a_{2n} &… & a_ {nn} {vmatrix} \ \ \ end DT = ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ a11a12. J. a1na21a22.. a2n……… an1an2.. Ann ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
So bij=ajib_{ij}=a_{ji}bij=aji
Introduce DT = ∣ b11b12… b1nb21b22… b2n…… bn1bn2… BNN ∣D^T=\begin{vmatrix} b_{11} &b_ {12} &… & b_{1n}\\ b_{21} & b_{22} & … &b_{2n}\\ . & . & & . \\ . & . & & . \\ b_{n1} & b_{n2} &… & b_ {nn} {vmatrix} \ \ \ end DT = ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ b11b21. J. bn1b12b22.. bn2……… b1nb2n.. BNN ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ = ∑ (1 -) tb1p1b2p2… bnpn\sum(-1)^tb_{1p_1}b_{2p_2}… B_ {np_n} ∑ (1 -) tb1p1b2p2… BNPN = ∑ (1 -) tap11ap22… apnn\sum(-1)^ta_{p_11}a_{p_22}… A_ {p_nn} ∑ (1 -) tap11ap22… Apnn (using bij = ajib_ {ij} = a_ {ji} bij = aji)
And because
so
Proof done!
The nature of the 2
content
Swap two rows (columns) of the determinant, the determinant changes sign
prove
Let’s say the determinant of order N D D= epsilon a11a12… a1na21a22… a2n…… an1an2… Ann ∣D=\begin{vmatrix} a_{11} &a_ {12} &… & a_{1n}\\ a_{21} & a_{22} & … &a_{2n}\\ . & . & & . \\ . & . & & . \\ a_{n1} & a_{n2} &… & a_ {nn} {vmatrix} D = \ \ \ end ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ a11a21. J. an1a12a22.. an2……… a1na2n.. Ann ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
Swap row I and row j
Have to D1D_1D1
We set up
When k indicates I, jk \ neq I, jk = I, j, a BKP = akpb_ KP} {= a_ KP} {BKP = akp when k = I, jk = I, jk = I, j, IP has BJP = ajpb_ {} = a_ jp} {BJP = ajp, BJP = aipb_ jp} {= a_} {IP BJP = aip
In simple terms
- If k≠ I,jk\neq I,jk= I,j, that is, the two rows that do not belong to the exchange, b and A are the complete correspondence;
- When k is equal to I,jk is equal to I,jk is equal to I,j, those are the two rows that swap, and the rows between B and A are the opposite, the columns are the same
with
Comparison shows that only row coordinates are swapped
From 1… i… j… N becomes 1… j… i… n
And obviously, just like swapping any two elements in a complete permutation, the parity changes which is the inverse number plus 1 or minus 1
It’s just that in the determinant it’s equivalent to a change in parity, which is multiplied by a minus 1
so
Proof done!
The nature of the three
content
Multiplying all elements of a row (column) by the same number k is equal to multiplying the determinant by the number k
prove
Let’s say the determinant D= epsilon a11a12… a1na21a22… a2n…… an1an2… Ann ∣D=\begin{vmatrix} a_{11} &a_ {12} &… & a_{1n}\\ a_{21} & a_{22} & … &a_{2n}\\ . & . & & . \\ . & . & & . \\ a_{n1} & a_{n2} &… & a_ {nn} {vmatrix} D = \ \ \ end ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ a11a21. J. an1a12a22.. an2……… a1na2n.. Ann ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
If I multiply all of the entries in row I times k, I get 1, 2, 3
reduction
Proof done!
The same is true for columns
The nature of the 4
content
The determinant is equal to 0 if there are two rows (columns) of elements in a proportional column
prove
Let’s say the determinant D= epsilon a11a12… a1n… ai1ai2… ain… aj1aj2… ajn… an1an2… Ann ∣D=\begin{vmatrix} a_{11} &a_ {12} &… & a_{1n}\\ . & . & & . \\ a_{i1} & a_{i2} & … &a_{in}\\ . & . & & . \\ a_{j1} & a_{j2} & … &a_{jn}\\ . & . & & . \\ a_{n1} & a_{n2} &… & a_ {nn} {vmatrix} D = \ \ \ end ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ a11. Ai1, aj1. An1a12. Ai2. Aj2. An2… A1n. Ain. Ajn. Ann ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
Where the element in row I is proportional to the element in row J, that is, AJP =k∗ AjPA_ {jp}= K *a_{jp}ajp=k∗ajp
Because ajp = k ∗ ajpa_ jp} {= k * a_ jp} {ajp = k ∗ ajp
so
If I swap row I and row j
The determinant DDD still doesn’t change
Because D is going to be the same
K ∗ ∑ (1 -) ta1p1… aipi… aipi… anpn=Dk*\sum(-1)^ta_{1p_1}… a_{ip_i}… a_{ip_i}… A_ {np_n} = Dk ∗ ∑ (1 -) ta1p1… aipi… aipi… Anpn is equal to D.
But because any two rows, when you swap them, you have to change the sign to -d
In conclusion, there are
get
Proof done!
Nature of the five
content
If the elements of a row (column) are the sum of two numbers, for example, the ith column is the sum of two numbers
D = ∣ a11a12… (a1i+b1i)… a1na21a22… (a2i+b2i)… a2n……… an1an2… (ani+bni)… Ann ∣D=\begin{vmatrix} a_{11} &a_ {12} &… &(a_{1i}+b_{1i})&… & a_{1n}\\ a_{21} & a_{22} & … &(a_{2i}+b_{2i})&… &a_{2n}\\ . & . & & . \\ . & . & & . \\ . & . & & . \\ a_{n1} & a_{n2} &… &(a_{ni}+b_{ni})&… & a_ {nn} {vmatrix} D = \ \ \ end ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ a11a21… an1a12a22… an2……… (a1i+b1i)(a2i+b2i)… (ani+bni)……… A1na2nann ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ criterion
prove
Proof done!
The nature of the 6
content
You multiply each element of one row of the determinant by the same number and then add it to the corresponding element of the other row, the same determinant
prove
Let’s say the determinant D= epsilon a11a12… a1n… ai1ai2… ain… aj1aj2… ajn… an1an2… Ann ∣D=\begin{vmatrix} a_{11} &a_ {12} &… & a_{1n}\\ . & . & & . \\ a_{i1} & a_{i2} & … &a_{in}\\ . & . & & . \\ a_{j1} & a_{j2} & … &a_{jn}\\ . & . & & . \\ a_{n1} & a_{n2} &… & a_ {nn} {vmatrix} D = \ \ \ end ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ a11. Ai1, aj1. An1a12. Ai2. Aj2. An2… A1n. Ain. Ajn. Ann ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
You multiply the JTH row times k, add it to the ith row, and you get
That’s property 5
That’s property 4
So the D1 = ∣ a11a12… a1n… Ai1 + k ∗ ∗ aj1ai2 + k aj2… Ain + k ∗ ajn… aj1aj2… ajn… an1an2… Ann ∣ = ∣ a11a12… a1n… ai1ai2… ain… aj1aj2… ajn… an1an2… Ann ∣=DD_1=\begin{vmatrix} a_{11} &a_ {12} &… & a_{1n}\\ . & . & & . \\ a_{i1}+k*a_{j1} & a_{i2}+k*a_{j2} & … &a_{in}+k*a_{jn}\\ . & . & & . \\ a_{j1} & a_{j2} & … &a_{jn}\\ . & . & & . \\ a_{n1} & a_{n2} &… & a_{nn}\\ \end{vmatrix} =\begin{vmatrix} a_{11} & a_{12} &… & a_{1n}\\ . & . & & . \\ a_{i1} & a_{i2} & … &a_{in}\\ . & . & & . \\ a_{j1} & a_{j2} & … &a_{jn}\\ . & . & & . \\ a_{n1} & a_{n2} &… & a_ {nn} {vmatrix} \ \ \ end = DD1 = ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ a11. Ai1 + k ∗ aj1, aj1. An1a12. Ai2 + k ∗ aj2. Aj2. An2… A1n. Ain + k ∗ ajn. Ajn. Ann ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ = ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ a11. Ai1, aj1. An1a12. Ai2. Aj2. An2… A1n. Ain. Ajn. Ann ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ = D
Proof done!
conclusion
Description:
- Refer to textbook “linear algebra” fifth edition tongji University mathematics department
- With the book concept explanation combined with some of their own understanding and thinking
The essay is just a study note, recording a process from 0 to 1
Hope to help you, if there is a mistake welcome small partners to correct ~
I am haihong ଘ(੭, ᵕ)੭
If you think it’s ok, please give it a thumbs up
Thanks for your support ❤️