A list,

Improved LSTM prediction based on MATLAB Bayesian network

Ii. Source code

% % % % % % % % % %Gaussian Process Regression (GPR)               %%%%%%%%%
% Demo: prediction using GPR
% ---------------------------------------------------------------------%

clc
close all
clear all
addpath(genpath(pwd))

% load data
%{
x :   training inputs
y :   training targets
xt:   testing inputs
yt:   testing targets
%}

% multiple input-single output
load('./data/data_1.mat')


% Set the mean function, covariance function and likelihood function
% Take meanConst, covRQiso and likGauss as examples

 
% Initialization of hyperparameters
hyp = struct('mean', 3, 'cov', [0 0 0], 'lik', 1);


% meanfunc = [];
% covfunc = @covSEiso; 
% likfunc = @likGauss; 
% % Initialization of hyperparameters
% hyp = struct('mean'[],'cov'[0 0].'lik'.- 1);


% Optimization of hyperparameters
hyp2 = minimize(hyp, @gp, - 20, @infGaussLik, meanfunc, covfunc, likfunc,x, y);

% Regression using GPR
% yfit is the predicted mean, and ys is the predicted variance
 

% Visualization of prediction results
plotResult(yt, yfit)
% load data
%{
x :   training inputs
y :   training targets
xt:   testing inputs
yt:   testing targets
%}

% multiple input-multiple output
load('./data/data_2.mat')


% Set the mean function, covariance function and likelihood function
% Take meanConst, covRQiso and likGauss as examples
meanfunc = @meanConst;
covfunc = @covRQiso; 
likfunc = @likGauss; 

% Initialization of hyperparameters
hyp = struct('mean'.3.'cov'[2 2 2].'lik'.- 1);



% meanfunc = [];
% covfunc = @covSEiso; 
% likfunc = @likGauss; 
% 
% hyp = struct('mean'[],'cov'[0 0].'lik'.- 1);


% Optimization of hyperparameters
 

% Regression using GPR
% yfit is the predicted mean, and ys is the predicted variance
 
Copy the code

Third, the operation result

Fourth, note

Version: 2014 a