Official warehouse: github.com/ultralytics…
The official document: docs.ultralytics.com/quick-start…
In this case I rented a k80 mirror and chose pytorch1.8.1
Cloning of warehouse
git clone https://github.com/ultralytics/yolov5.git
Copy the code
I used the domestic mirror acceleration here
https://github.com.cnpmjs.org/ultralytics/yolov5.git
Copy the code
Install the required environment
cd yolov5
pip install -r requirements.txt
Copy the code
test
python detect.py --sourceData /images/ --weights yolov5s.pt --conf 0.4Copy the code
In my case, you can see the test images in the /yolov5/runs/detect/exp5 directory
Refer to the article
Ubuntu18 YOLOv5 configuration and training
The most detailed yoloV5 environment configuration setup ever + configuration required files
Cuda11.1, CUDNN8.0.5, PyTorch1.8.0, tensorrt7.2.2.3 are configured in THE YOLOv5 — RTX 3080 CONda environment
Tutorial: super detailed yolov5 model training from scratch
YOLOV5 parsing