1. Introduction of Seaborn

Seaborn is a library based on matplotlib and its data structure is consistent with Pandas.

The Seaborn library is designed to mine and understand data around data visualization.

Seaborn provides the data set oriented mapping function, which mainly operates on column index and array, including internal semantic mapping and statistical integration of the whole data set.

It is no exaggeration to say that Seaborn can create any diagram you can imagine.

2. Sample data

All of the visual graphs in this article are based on Seaborn’s own restaurant customer consumption data set, TIPS. The first two pieces of the TIPS dataset are as follows:

No total_bill tip sex smoker day time size
0 16.99 1.01 female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 2

(Total_bill, tip, sex, smoker, day, time, size, smoker)

3. Seaborn overview

The diagram

A diagram is generally used to show a bivariate relationship.

function role
relplot(kind=’line’)/lineplot( ) Draw a line graph with parameters: Data, X, Y, Hue
relplot(kind=’scatter’)/scatterplot( ) Draw scatter diagram with parameters: data, x, y, Hue
parameter meaning
data Pandas. DataFrame object
x The X-axis variable of the plot
y The Y-axis variable of the plot
hue Discriminating dimensions are generally typed variables
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

sns.set(style='darkgrid')

tips = sns.load_dataset('tips')
sns.relplot(x='total_bill',y='tip',data=tips)
sns.relplot(x="total_bill", y="tip", hue="smoker", data=tips);

fmri = sns.load_dataset("fmri")
sns.relplot(x="timepoint", y="signal", kind="line", data=fmri);
Copy the code
Classification figure

Visualization of categorizable data; The classification diagram can be presented by scatter diagram, distribution diagram, estimation diagram and other forms.

function role
catplot(kind=’strop’)/stripplot( ) Classified scatter plot
catplot(kind=’swarm’)/swarmplot( ) Classified scatter plot
catplot(kind=’box’)/boxplot( ) Classification distribution map
catplot(kind=’violin’)/violinplot( ) Classification distribution map
catplot(kind=’boxen’)/boxenplot( ) Classification distribution map
catplot(kind=’point’)/pointplot( ) Classification estimation diagram
catplot(kind=’bar’)/barplot( ) Classification estimation diagram
catplot(kind=’count’)/countplot( ) Classification estimation diagram
import seaborn as sns
import matplotlib.pyplot as plt
sns.set(style='ticks',color_codes=True)

tips = sns.load_dataset('tips')
sns.catplot(x='day',y='total_bill',data=tips)
sns.catplot(x='day',y='total_bill',kind='swarm',data=tips)
sns.catplot(x='day',y='total_bill',kind='box',data=tips)

diamonds = sns.load_dataset('diamonds')
sns.catplot(x='color',y='price',kind='boxen',data=diamonds.sort_values('color'))
sns.catplot(x="total_bill", y="day", hue="time",kind="violin", data=tips)

titanic = sns.load_dataset("titanic")
sns.catplot(x="sex", y="survived", hue="class", kind="point", data=titanic)
sns.catplot(x="sex", y="survived", hue="class", kind="bar", data=titanic)
sns.catplot(x="deck", kind="count", palette="ch:.25", data=titanic)
Copy the code
Return to figure

Regression is performed on the data and the regression function is plotted.

function role
lmplot( ) Plot regression
regplot( ) Plot regression
residplot( ) Plot regression
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

sns.set(color_codes=True)
tips = sns.load_dataset("tips")
sns.lmplot(x="total_bill", y="tip", data=tips)
sns.residplot(x="x", y="y", data=anscombe.query("dataset == 'II'"),scatter_kws={"s": 80})

f, ax = plt.subplots(figsize=(5.6))
sns.regplot(x="total_bill", y="tip", data=tips, ax=ax)
Copy the code
Distribution of

A chart used to examine univariate or bivariate distributions.

function role
distplot( ) Univariate distribution
kdeplot( ) Kernel density estimation
pairplot( ) Pairwise binary distribution
joinplot( )/joinplot(kind=’hex’)/joinplot(kind=’reg’) Bivariate distribution
import seaborn as sns
import matplotlib.pyplot as plt
from scipy import stats

sns.set(color_codes=True)
x = np.random.normal(size=100)
sns.distplot(x)
sns.kdeplot(x, shade=True)

mean, cov = [0.1], [[1.. 5), (. 5.1)]
data = np.random.multivariate_normal(mean, cov, 200)
df = pd.DataFrame(data, columns=["x"."y"])
sns.jointplot(x="x", y="y", data=df)

iris = sns.load_dataset("iris")
sns.pairplot(iris)
Copy the code
The matrix in figure

Visualize the data set as a matrix.

function role
heatmap( ) Heat map
clustermap( ) Cluster matrix graph
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd

sns.set_theme()

# Load the example flights dataset and convert to long-form
flights_long = sns.load_dataset("flights")
flights = flights_long.pivot("month"."year"."passengers")

# Draw a heatmap with the numeric values in each cell
f, ax = plt.subplots(figsize=(9.6))
sns.heatmap(flights, annot=True, fmt="d", linewidths=. 5, ax=ax)


sns.set_theme()

# Load the brain networks example dataset
df = sns.load_dataset("brain_networks", header=[0.1.2], index_col=0)

# Select a subset of the networks
used_networks = [1.5.6.7.8.12.13.17]
used_columns = (df.columns.get_level_values("network")
                          .astype(int)
                          .isin(used_networks))
df = df.loc[:, used_columns]

# Create a categorical palette to identify the networks
network_pal = sns.husl_palette(8, s=45.)
network_lut = dict(zip(map(str, used_networks), network_pal))

# Convert the palette to vectors that will be drawn on the side of the matrix
networks = df.columns.get_level_values("network")
network_colors = pd.Series(networks, index=df.columns).map(network_lut)

# Draw the full plot
g = sns.clustermap(df.corr(), center=0, cmap="vlag",
                   row_colors=network_colors, col_colors=network_colors,
                   dendrogram_ratio=(1..2.),
                   cbar_pos=(. 02.32...03.2.),
                   linewidths=75., figsize=(12.13))

g.ax_row_dendrogram.remove()
Copy the code
Structured multidrawing

Plots relationships between pairs of variables in the form of subgraphs.

function role
FacetGrid Structured multidrawing
PairGrid Structured multidrawing

Ending