A list,
Matlab based uav tracking track
Ii. Source code
clc; clear all; %% reference locus generates N=100;
T=0.05;
% Xout=zeros(2*N,3);
% Tout=zeros(2*N,1);
Xout=zeros(N,3);
Tout=zeros(N,1);
for k=1:1:N
Xout(k,1)=k*T;
Xout(k,2) =2;
Xout(k,3) =0;
Tout(k,1)=(k- 1)*T;
end
%% Tracking a constant reference trajectory
Nx=3;
Nu =2;
Tsim =20;
X0 = [0 0 pi/3];
[Nr,Nc] = size(Xout); % Nr is the number of rows of Xout
% Mobile Robot Parameters
c = [1 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1];
L = 1;
Rr = 1;
w = 1;
% Mobile Robot variable Model
vd1 = Rr*w; % For circular trajectory
vd2 = 0;
x_real=zeros(Nr,Nc);
x_piao=zeros(Nr,Nc);
u_real=zeros(Nr,2);
u_piao=zeros(Nr,2);
x_real(1,:)=X0;
x_piao(1,:)=x_real(1,:)-Xout(1, :); X_PIAO=zeros(Nr,Nx*Tsim); XXX=zeros(Nr,Nx*Tsim); % to keep all the state values predicted at each time q=[1 0 0;0 1 0;0 0 0.5];
Q_cell=cell(Tsim,Tsim);
for i=1:1:Tsim
for j=1:1:Tsim
if i==j
Q_cell{i,j}=q;
else
Q_cell{i,j}=zeros(Nx,Nx);
end
end
end
Q=cell2mat(Q_cell);
R=0.1*eye(Nu*Tsim,Nu*Tsim);
for i=1:1:Nr
t_d =Xout(i,3);
a=[1 0 -vd1*sin(t_d)*T;
0 1 vd1*cos(t_d)*T;
0 0 1; ] ; b=[cos(t_d)*T 0;
sin(t_d)*T 0;
0T; ] ; A_cell=cell(Tsim,1);
B_cell=cell(Tsim,Tsim);
for j=1:1:Tsim
A_cell{j,1}=a^j;
for k=1:1:Tsim
if k<=j
B_cell{j,k}=(a^(j-k))*b;
else
B_cell{j,k}=zeros(Nx,Nu);
end
end
end
A=cell2mat(A_cell);
B=cell2mat(B_cell);
b_cons=[];
lb=[- 1;- 1];
ub=[1;1];
tic
[X,fval(i,1),exitflag(i,1),output(i,1)]=quadprog(H,f,A_cons,b_cons,[],[],lb,ub);
toc
X_PIAO(i,:)=(A*x_piao(i,:)'+B*X)';
if i+j<Nr
for j=1:1:Tsim
XXX(i,1+3*(j- 1))=X_PIAO(i,1+3*(j- 1))+Xout(i+j,1);
XXX(i,2+3*(j- 1))=X_PIAO(i,2+3*(j- 1))+Xout(i+j,2);
XXX(i,3+3*(j- 1))=X_PIAO(i,3+3*(j- 1))+Xout(i+j,3);
end
else
for j=1:1:Tsim
XXX(i,1+3*(j- 1))=X_PIAO(i,1+3*(j- 1))+Xout(Nr,1);
XXX(i,2+3*(j- 1))=X_PIAO(i,2+3*(j- 1))+Xout(Nr,2);
XXX(i,3+3*(j- 1))=X_PIAO(i,3+3*(j- 1))+Xout(Nr,3);
end
end
u_piao(i,1)=X(1.1);
u_piao(i,2)=X(2.1);
Tvec=[0:0.05:4];
X00=x_real(i,:);
vd11=vd1+u_piao(i,1);
vd22=vd2+u_piao(i,2);
XOUT=dsolve('Dx-vd11*cos(z)=0'.'Dy-vd11*sin(z)=0'.'Dz-vd22=0'.'x(0)=X00(1)'.'y(0)=X00(2)'.'z(0)=X00(3)');
t=T;
x_real(i+1.1)=eval(XOUT.x);
x_real(i+1.2)=eval(XOUT.y);
x_real(i+1.3)=eval(XOUT.z);
if(i<Nr)
x_piao(i+1,:)=x_real(i+1,:)-Xout(i+1, :); end u_real(i,1)=vd1+u_piao(i,1);
u_real(i,2)=vd2+u_piao(i,2);
figure(1);
hold on;
title('Comparison of tracking results');
xlabel('Horizontal position X');
axis([- 1 5 - 1 3]);
ylabel(Longitudinal position Y);
hold on;
for k=1:1:Tsim
X(i,k+1)=XXX(i,1+3*(k- 1));
Y(i,k+1)=XXX(i,2+3*(k- 1));
end
X(i,1)=x_real(i,1);
Y(i,1)=x_real(i,2);
plot(X(i,:),Y(i,:),'y') hold on; Figure (end %%)2)
subplot(3.1.1);
hold on;
%grid on;
%title('State quantity - horizontal coordinate X contrast');
xlabel('Sampling time T');
ylabel('Horizontal position X')
subplot(3.1.2);
plot(Tout(1:Nr),Xout(1:Nr,2),'k--');
hold on;
%grid on;
%title('State quantity - horizontal coordinate Y contrast');
xlabel('Sampling time T');
ylabel(Longitudinal position Y)
subplot(3.1.3);
hold on;
%grid on;
hold on;
%title('State quantity -\theta contrast');
xlabel('Sampling time T');
ylabel('\theta')
figure(3)
subplot(2.1.1);
%grid on;
%title('Control quantity - longitudinal velocity V contrast');
xlabel('Sampling time T');
ylabel('Longitudinal velocity')
subplot(2.1.2)
%grid on;
%title('Control-angular acceleration comparison');
xlabel('Sampling time T');
ylabel(Angular acceleration.)
figure(4)
subplot(3.1.1);
%grid on;
xlabel('Sampling time T');
ylabel('e(x)');
subplot(3.1.2);
%grid on;
xlabel('Sampling time T');
ylabel('e(y)');
subplot(3.1.3);
%grid on;
xlabel('Sampling time T');
ylabel('e(\theta)');
Copy the code
Third, the operation result
Fourth, note
Version: 2014 a