First, the way to obtain the code

Get the code 1: by subscribing to the paid column of purple Pole Shenguang blog, you can get this code with payment voucher, private letter bloggers.

Access code 2: Open CSDN membership through the homepage of CSDN blog, and the code can be obtained by payment voucher and private letter bloggers.

[optimization algorithm] multi-objective tracking optimization algorithm (MTOA) [including Matlab source code 1466 issue]

Note: For CSDN membership, only one code can be obtained free of charge (valid within three days from the date of opening); Subscribe to the paid column of purple Pole Shenguang blog, you can get 2 copies of the code for free (valid for three days from the subscription date);

Two, some source code

%============================================================================%
%               Multi-tracker Optimization Algorithm (MTOA)                  % 
%                             version 1.0                                    %
%                       -----------------------                              %
%                    Developed in MATLAB R2017b (v93.)                       %
%                                  %
%============================================================================%

clear
clc
close all
format long

%=======================Initializing MTOA Parameters=====================
Fcn_Name='TestFcn'; % Optimization Problrm Function
%=== Rastrigin Function (Function number 11 in the MTOA paper (Table. 2)) <----(Normalized Input)
%
%    x=xn*2- 1;
%    u=(x(1) ^2+x(2) ^2-cos(18*x(1)) -cos(18*x(2)));
%  
%    Min Cost = 2 - @ xn=(0.5 , 0.5)

Min=zeros(1.2). '; 
Max=ones(1.2). '; 
Par_Interval=[Min Max]; %  Search Space Limitation 
No_GTs=20; %  Number of Global Tracker 
No_LTs=4; %  Number of Local Tracker
%---------- Equivalent Population = 100

RM=sqrt(2); % Maximum Search Radius
Rm=1e-4; % Minimum Search Radius
Max_Itr=100; % Maximum Iteration
Beta=95.; % Beta
Lambda=2; % Lambda
Theta=pi/8; % Theta

%==============================Graphic Option============================
TwoDGraphic_on=0; % (0  or  1) % If this option is enabled (TwoDGraphic_on=1) the Local and Global search process will be displayed.

%============================MTOA Function Run===========================
[GOP_Cost,GOP]=MTOA(Fcn_Name,Par_Interval,No_GTs,No_LTs,RM,Rm,Max_Itr,Beta,Lambda,Theta,TwoDGraphic_on);

%=========   ==================Solution==================================
disp('Solution=')
disp(GOP);
%============================================================================%
%               Multi-tracker Optimization Algorithm (MTOA)                  % 
%                             version 1.0                                    %
%                    %
%============================================================================%
function Out = Ev_Fcn(Points,Fcn_Name)

[m,n]=size(Points);

for i=1:n
o(1,i)=feval(Fcn_Name,Points(:,i));
end

Out=o;

end


Copy the code

3. Operation results

Matlab version and references

1 matlab version 2014A

[1] Yang Baoyang, YU Jizhou, Yang Shan. Intelligent Optimization Algorithm and Its MATLAB Example (2nd Edition) [M]. Publishing House of Electronics Industry, 2016. [2] ZHANG Yan, WU Shuigen. MATLAB Optimization Algorithm source code [M]. Tsinghua University Press, 2017. [3] SHI Yuanbo. Cloud Computing Task Scheduling Algorithm based on improved Swarm Spider Optimization [J]. Computer Programming Skills and Maintenance. 2021,(04)