First, the way to obtain the code
Get the code 1: by subscribing to the paid column of purple Pole Shenguang blog, you can get this code with payment voucher, private letter bloggers.
Access code 2: Open CSDN membership through the homepage of CSDN blog, and the code can be obtained by payment voucher and private letter bloggers.
[optimization algorithm] multi-objective tracking optimization algorithm (MTOA) [including Matlab source code 1466 issue]
Note: For CSDN membership, only one code can be obtained free of charge (valid within three days from the date of opening); Subscribe to the paid column of purple Pole Shenguang blog, you can get 2 copies of the code for free (valid for three days from the subscription date);
Two, some source code
%============================================================================%
% Multi-tracker Optimization Algorithm (MTOA) %
% version 1.0 %
% ----------------------- %
% Developed in MATLAB R2017b (v93.) %
% %
%============================================================================%
clear
clc
close all
format long
%=======================Initializing MTOA Parameters=====================
Fcn_Name='TestFcn'; % Optimization Problrm Function
%=== Rastrigin Function (Function number 11 in the MTOA paper (Table. 2)) <----(Normalized Input)
%
% x=xn*2- 1;
% u=(x(1) ^2+x(2) ^2-cos(18*x(1)) -cos(18*x(2)));
%
% Min Cost = 2 - @ xn=(0.5 , 0.5)
Min=zeros(1.2). ';
Max=ones(1.2). ';
Par_Interval=[Min Max]; % Search Space Limitation
No_GTs=20; % Number of Global Tracker
No_LTs=4; % Number of Local Tracker
%---------- Equivalent Population = 100
RM=sqrt(2); % Maximum Search Radius
Rm=1e-4; % Minimum Search Radius
Max_Itr=100; % Maximum Iteration
Beta=95.; % Beta
Lambda=2; % Lambda
Theta=pi/8; % Theta
%==============================Graphic Option============================
TwoDGraphic_on=0; % (0 or 1) % If this option is enabled (TwoDGraphic_on=1) the Local and Global search process will be displayed.
%============================MTOA Function Run===========================
[GOP_Cost,GOP]=MTOA(Fcn_Name,Par_Interval,No_GTs,No_LTs,RM,Rm,Max_Itr,Beta,Lambda,Theta,TwoDGraphic_on);
%========= ==================Solution==================================
disp('Solution=')
disp(GOP);
%============================================================================%
% Multi-tracker Optimization Algorithm (MTOA) %
% version 1.0 %
% %
%============================================================================%
function Out = Ev_Fcn(Points,Fcn_Name)
[m,n]=size(Points);
for i=1:n
o(1,i)=feval(Fcn_Name,Points(:,i));
end
Out=o;
end
Copy the code
3. Operation results
Matlab version and references
1 matlab version 2014A
[1] Yang Baoyang, YU Jizhou, Yang Shan. Intelligent Optimization Algorithm and Its MATLAB Example (2nd Edition) [M]. Publishing House of Electronics Industry, 2016. [2] ZHANG Yan, WU Shuigen. MATLAB Optimization Algorithm source code [M]. Tsinghua University Press, 2017. [3] SHI Yuanbo. Cloud Computing Task Scheduling Algorithm based on improved Swarm Spider Optimization [J]. Computer Programming Skills and Maintenance. 2021,(04)