A list,
Marine Predator algorithm (MPA) is a natural heuristic optimization algorithm, which follows the rules of natural dominance in optimal foraging strategy and meets the rate strategy between predator and prey in Marine ecosystem.
Ii. Source code
% % _________________________________________________________________________Marine Predators Algorithm source code (Developed in MATLAB R2015a)% % programming: Afshin Faramarzi & Seyedali Mirjalili % % paper: % A. Faramarzi, M. Heidarinejad, S. Mirjalili, A.H. Gandomi, % Marine Predators Algorithm: A Nature-inspired Metaheuristic % Expert Systems with Applications % DOI: Doi.org/10.1016/j.eswa.2020.113377% % E - mails:
afaramar@hawk.iit.edu (Afshin Faramarzi)
% muh182@iit.edu (Mohammad Heidarinejad)
% ali.mirjalili@laureate.edu.au (Seyedali Mirjalili)
% gandomi@uts.edu.au (Amir H Gandomi)% % _________________________________________________________________________ -------------------------------------------- % fobj= @YourCostFunction
% dim = number of your variables
% Max_iteration = maximum number of iterations
% SearchAgents_no = number of search agents
% lb=[lb1,lb2,...,lbn] where lbn is the lower bound of variable n
% ub=[ub1,ub2,...,ubn] where ubn is the upper bound of variable n
% ---------------------------------------------------------
clear all
clc
format long
SearchAgents_no=25; % Number of search agents
Function_name='F23';
Max_iteration=500; % Maximum number of iterations
[lb,ub,dim,fobj]=Get_Functions_details(Function_name);
[Best_score,Best_pos,Convergence_curve]=MPA(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);
% function topology
figure('Position'[500 400 700 290])
subplot(1.2.1);
func_plot(Function_name);
title('Function Topology')
xlabel('x_1');
ylabel('x_2');
zlabel([Function_name,'( x_1 , x_2 )'])
% Convergence curve
subplot(1.2.2);
semilogy(Convergence_curve,'Color'.'r')
title('Objective space')
xlabel('Iteration');
ylabel('Best score obtained so far'); % % _________________________________________________________________________Marine Predators Algorithm source code (Developed in MATLAB R2015a)% % programming: Afshin Faramarzi & Seyedali Mirjalili % % paper: % A. Faramarzi, M. Heidarinejad, S. Mirjalili, A.H. Gandomi, % Marine Predators Algorithm: A Nature-inspired Metaheuristic % Expert Systems with Applications % DOI: Doi.org/10.1016/j.eswa.2020.113377% % E - mails: afaramar@hawk.iit.edu (Afshin Faramarzi)
% muh182@iit.edu (Mohammad Heidarinejad)
% ali.mirjalili@laureate.edu.au (Seyedali Mirjalili)
% gandomi@uts.edu.au (Amir H Gandomi)
%_________________________________________________________________________
% This function containts full information and implementations of the benchmark
% functions in Table 1, Table 2, and Table 3 in the paper
% lb is the lower bound: lb=[lb_1,lb_2,...,lb_d]
% up is the uppper bound: ub=[ub_1,ub_2,...,ub_d]
% dim is the number of variables (dimension of the problem)
function [lb,ub,dim,fobj] = Get_Functions_details(F)
switch F
case 'F1'
fobj = @F1;
lb=- 100.;
ub=100;
dim=50;
case 'F2'
fobj = @F2;
lb=- 10;
ub=10;
dim=50;
case 'F3'
fobj = @F3;
lb=- 100.;
ub=100;
dim=50;
case 'F4'
fobj = @F4;
lb=- 100.;
ub=100;
dim=50;
case 'F5'
fobj = @F5;
lb=- 30;
ub=30;
dim=50;
case 'F6'
fobj = @F6;
lb=- 100.;
ub=100;
dim=50;
case 'F7'
fobj = @F7;
lb=1.28;
ub=1.28;
dim=50;
case 'F8'
fobj = @F8;
lb=- 500.;
ub=500;
dim=50;
case 'F9'
fobj = @F9;
lb=5.12;
ub=5.12;
dim=50;
case 'F10'
fobj = @F10;
lb=- 32;
ub=32;
dim=50;
case 'F11'
fobj = @F11;
lb=- 600.;
ub=600;
dim=50;
case 'F12'
fobj = @F12;
lb=- 50;
ub=50;
dim=50;
case 'F13'
fobj = @F13;
lb=- 50;
ub=50;
dim=50;
case 'F14'
fobj = @F14;
lb=65.536;
ub=65.536;
dim=2;
case 'F15'
fobj = @F15;
lb=- 5;
ub=5;
dim=4;
case 'F16'
fobj = @F16;
lb=- 5;
ub=5;
dim=2;
case 'F17'
fobj = @F17;
lb=[- 5.0];
ub=[10.15];
dim=2;
case 'F18'
fobj = @F18;
lb=2 -;
ub=2;
dim=2;
case 'F19'
fobj = @F19;
lb=0;
ub=1;
dim=3;
case 'F20'
fobj = @F20;
lb=0;
ub=1;
dim=6;
case 'F21'
fobj = @F21;
lb=0;
ub=10;
dim=4;
case 'F22'
fobj = @F22;
lb=0;
ub=10;
dim=4;
case 'F23'
fobj = @F23;
lb=0;
ub=10;
dim=4;
end
end
% F1
function o = F1(x)
o=sum(x.^2);
end
% F2
function o = F2(x)
o=sum(abs(x))+prod(abs(x));
end
% F3
function o = F3(x)
dim=size(x,2);
o=0;
for i=1:dim
o=o+sum(x(1:i))^2;
end
end
% F4
function o = F4(x)
o=max(abs(x));
end
Copy the code
3. Operation results
Fourth, note
Version: 2014 a